Reliable localization using set-valued nonlinear filters

We propose a novel methodology for reliable localization of an autonomous mobile robot navigating in an unstructured environment using noisy absolute measurements from its exteroceptive sensors. A new deterministic filtering technique is introduced, which is based on the recursive computation of a bounding set that is guaranteed to contain the true state of the system, despite process and observation noise, and taking into explicit consideration uncertainties due to the linearization error. The proposed set-valued nonlinear filter relies on a two-step prediction-correction structure, with each step requiring the solution of a particular convex optimization problem. The method is illustrated by simulation on a localization problem for a nonholonomic rover, and it is compared with the standard extended Kalman filter approach.

[1]  Giuseppe Oriolo,et al.  A KF-BASED LOCALIZATION ALGORITHM FOR NONHOLONOMIC MOBILE ROBOTS , 1998 .

[2]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[3]  Max Mintz,et al.  A confidence set approach to mobile robot localization , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[4]  A. Kurzhanski,et al.  Ellipsoidal Calculus for Estimation and Control , 1996 .

[5]  Giuseppe Carlo Calafiore,et al.  Robust filtering for discrete-time systems with bounded noise and parametric uncertainty , 2001, IEEE Trans. Autom. Control..

[6]  Giuseppe Cala Ellipsoidal bounds for uncertain linear equations and dynamical systems , 2004 .

[7]  William B. Thompson,et al.  Localizing in unstructured environments: dealing with the errors , 1994, IEEE Trans. Robotics Autom..

[8]  Sauro Longhi,et al.  Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots , 1999, IEEE Trans. Robotics Autom..

[9]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[10]  Qing-hao Meng,et al.  Adaptive extended Kalman filter (AEKF)-based mobile robot localization using sonar , 2000, Robotica.

[11]  Margrit Betke,et al.  Mobile robot localization using landmarks , 1997, IEEE Trans. Robotics Autom..

[12]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[13]  John J. Leonard,et al.  Directed Sonar Sensing for Mobile Robot Navigation , 1992 .

[14]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[15]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[16]  Garry A. Einicke,et al.  Robust extended Kalman filtering , 1999, IEEE Trans. Signal Process..

[17]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[18]  D. Bertsekas,et al.  Recursive state estimation for a set-membership description of uncertainty , 1971 .

[19]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[20]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[21]  Eric Walter,et al.  Robust Autonomous Robot Localization Using Interval Analysis , 2000, Reliab. Comput..

[22]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[23]  Stergios I. Roumeliotis,et al.  Bayesian estimation and Kalman filtering: a unified framework for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).