Decoupling of iron and phosphate in the global ocean

[1] We formulate a mechanistic model of the coupled oceanic iron and phosphorus cycles. The iron parameterization includes scavenging onto sinking particles, complexation with an organic ligand, and a prescribed aeolian source. Export production is limited by the availability of light, phosphate, and iron. We implement this biogeochemical scheme in a coarse resolution ocean general circulation model using scavenging rates and conditional stability constants guided by laboratory studies and a suite of box model sensitivity studies. The model is able to reproduce the broad regional patterns of iron and phosphorus. In particular, the high macronutrient concentrations of the Southern Ocean, tropical Pacific, and subarctic Pacific emerge from the explicit iron limitation of the model. In addition, the model also qualitatively reproduces the observed interbasin gradients of deep, dissolved iron with the lowest values in the Southern Ocean. The ubiquitous presence of significant amounts of free ligand is also explicitly captured. We define a tracer, Fe* which quantifies the degree to which a water mass is iron limited, relative to phosphorus. Surface waters in high-nutrient, lowchlorophyll regions have negative Fe* values, indicating Fe limitation. The extent of the decoupling of iron and phosphorus is determined by the availability and binding strength of the ligand relative to the scavenging by particulate. Global iron concentrations are sensitive to changes in scavenging rate and physical forcing. Decreasing the scavenging rate 40% results in � 0.1 nM increase in dissolved iron in deep waters. Forcing the model with weaker wind stresses leads to a decrease in surface [PO4] and [Fe ]i n the Southern Ocean due to a reduction in the upwelling strength.

[1]  G. Luther,et al.  Variation in Fe-organic complexation with depth in the Northwestern Atlantic Ocean as determined using a kinetic approach , 1998 .

[2]  W. Broecker,et al.  Atmospheric pCO2 sensitivity to the biological pump in the ocean , 2000 .

[3]  C. McClain,et al.  Biogeochemical modelling of the tropical Pacific Ocean. II: Iron biogeochemistry , 2001 .

[4]  J. Marshall,et al.  The Role of Eddy Transfer in Setting the Stratification and Transport of a Circumpolar Current , 2002 .

[5]  V. M. Kotlyakov,et al.  420 000 years of climate and atmospheric history revealed by the Vostok deep Antarctic ice core , 1999 .

[6]  I. Kudo,et al.  Vertical distributions of iron(III) hydroxide solubility and dissolved iron in the northwestern North Pacific Ocean , 2001 .

[7]  K. Bruland,et al.  Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method , 1995 .

[8]  S. J. Tanner,et al.  Iron, primary production and carbon-nitrogen flux studies during the JGOFS North Atlantic bloom experiment , 1993 .

[9]  R. Gordon,et al.  Northeast Pacific iron distributions in relation to phytoplankton productivity , 1988 .

[10]  A. Adcroft,et al.  Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model , 1997 .

[11]  Seong-Joong Kim,et al.  A coupled climate model simulation of the Last Glacial Maximum, Part 2: approach to equilibrium , 2003 .

[12]  J. Marshall,et al.  Can Eddies Set Ocean Stratification , 2002 .

[13]  M. Grotti,et al.  Temporal distribution of trace metals in Antarctic coastal waters , 2001 .

[14]  K. Johnson,et al.  The annual cycle of iron and the biological response in central California coastal waters , 2001 .

[15]  P. Croot,et al.  Growth rates of large and small Southern Ocean diatoms in relation to availability o iron in natural seawater , 2001 .

[16]  A. Butler,et al.  Determination of conditional stability constants and kinetic constants for strong model Fe-binding ligands in seawater , 2000 .

[17]  G. Luther,et al.  Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach , 1995 .

[18]  Y. Isoda,et al.  Control on dissolved iron concentrations in deep waters in the western , 2003 .

[19]  W. Sunda,et al.  Iron uptake and growth limitation in oceanic and coastal phytoplankton , 1995 .

[20]  S. Takeda,et al.  Response of equatorial Pacific phytoplankton to subnanomolar Fe enrichment , 1995 .

[21]  P. Sedwick,et al.  Iron and Manganese in the Ross Sea, Antarctica: Seasonal Iron Limitation in Antarctic Shelf Waters , 2000 .

[22]  T. Jickells,et al.  Atmospheric iron inputs to the oceans , 2001 .

[23]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[24]  A. Watson,et al.  Carbon Dioxide Fluxes in the Global Ocean , 2003 .

[25]  E. Boyle,et al.  Iron in the Sargasso Sea: Implications for the processes controlling dissolved Fe distribution in the ocean , 2002 .

[26]  W. Broenkow,et al.  Vertex: phytoplankton/iron studies in the Gulf of Alaska , 1989 .

[27]  Andrew J. Watson,et al.  A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization , 2000, Nature.

[28]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[29]  J. Hall,et al.  The impact of in situ Fe fertilisation on the microbial food web in the Southern Ocean , 2001 .

[30]  J. Toggweiler,et al.  Downward transport and fate of organic matter in the ocean: Simulations with a general circulation model , 1992 .

[31]  M. Jacobson,et al.  A study of gas‐aerosol equilibrium and aerosol pH in the remote marine boundary layer during the First Aerosol Characterization Experiment (ACE 1) , 2000 .

[32]  D. Mackey,et al.  Iron in the western Pacific: a riverine or hydrothermal source for iron in the Equatorial Undercurrent? , 2002 .

[33]  A. J. Watson,et al.  Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean , 1994, Nature.

[34]  J. Nishioka,et al.  Size‐fractionated iron distributions and iron‐limitation processes in the subarctic NW Pacific , 2003 .

[35]  Sol Hellerman,et al.  Normal Monthly Wind Stress Over the World Ocean with Error Estimates , 1983 .

[36]  J. Marshall,et al.  Constructing the Residual Circulation of the ACC from Observations , 2002 .

[37]  J. Nishioka,et al.  A Mesoscale Iron Enrichment in the Western Subarctic Pacific Induces a Large Centric Diatom Bloom , 2003, Science.

[38]  Scott C. Doney,et al.  Evaluation of ocean carbon cycle models with data‐based metrics , 2004 .

[39]  R. Armstrong An optimization‐based model of iron—light—ammonium colimitation of nitrate uptake and phytoplankton growth , 1999 .

[40]  C. V. D. Berg Evidence for organic complexation of iron in seawater , 1995 .

[41]  G. Paltridge,et al.  Radiative processes in meteorology and climatology , 1976 .

[42]  S. Rintoul,et al.  Circulation, Renewal, and Modification of Antarctic Mode and Intermediate Water , 2001 .

[43]  L. Balistrieri,et al.  Oceanic trace metal scavenging: the importance of particle concentration , 1988 .

[44]  J. D. Burton,et al.  Trace Metals in the Central and Southern North Sea , 1995 .

[45]  F. Morel,et al.  The equatorial Pacific Ocean: Grazer-controlled phytoplankton populations in an iron-limited ecosystem1 , 1994 .

[46]  B. Quéguiner,et al.  Limitation of algal growth by iron deficiency in the Australian Subantarctic Region , 1999 .

[47]  David M. Karl,et al.  Dinitrogen fixation in the world's oceans , 2002 .

[48]  Paul G. Falkowski,et al.  Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean , 1997, Nature.

[49]  L. Perelman,et al.  Hydrostatic, quasi‐hydrostatic, and nonhydrostatic ocean modeling , 1997 .

[50]  K. Johnson,et al.  Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean , 1996, Nature.

[51]  C. L. Leonard,et al.  An Iron-Based Ecosystem Model of the Central Equatorial Pacific , 1999 .

[52]  E. Maier‐Reimer,et al.  Nutrient trapping in the equatorial Pacific: The ocean circulation solution , 1999 .

[53]  Shigenobu Takeda,et al.  Effects of nitrogen and iron enrichments on phytoplankton communities in the Northwestern Indian Ocean , 1995 .

[54]  K. Timmermans,et al.  Low dissolved Fe and the absence of diatom blooms in remote Pacific waters of the Southern Ocean , 1999 .

[55]  N. M. Price,et al.  Iron chemistry in seawater and its relationship to phytoplankton: a workshop report , 1995 .

[56]  E. Achterberg,et al.  Deep dissolved iron profiles in the eastern North Atlantic in relation to water masses , 2003 .

[57]  A. Watson,et al.  Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2 , 2000, Nature.

[58]  P. Worsfold,et al.  The fate of added iron during a mesoscale fertilisation experiment in the Southern Ocean , 2001 .

[59]  John H. Martin glacial-interglacial Co2 change : the iron hypothesis , 1990 .

[60]  R. Duce,et al.  Atmospheric transport of iron and its deposition in the ocean , 1991 .

[61]  Francisco P. Chavez,et al.  Continental-shelf sediment as a primary source of iron for coastal phytoplankton , 1999, Nature.

[62]  S. Vink,et al.  Dissolved Fe in the upper waters of the Pacific sector of the Southern Ocean , 2001 .

[63]  M. Charette,et al.  Does iron fertilization lead to rapid carbon export in the Southern Ocean? , 2000 .

[64]  K. Buesseler,et al.  Thorium isotopes as indicators of particle dynamics in the upper ocean: results from the JGOFS North Atlantic Bloom experiment , 1993 .

[65]  G. Luther,et al.  Iron speciation in the Arabian Sea , 2000 .

[66]  T. Sawabe,et al.  Variation of size-fractionated Fe concentrations and Fe(III) hydroxide solubilities during a spring phytoplankton bloom in Funka Bay (Japan) , 2000 .

[67]  F. Dehairs,et al.  The distribution of Fe in the antarctic circumpolar current , 1997 .

[68]  K. Johnson,et al.  The behaviour of iron and other trace elements during the IronEx-I and PlumEx experiments in the Equatorial Pacific , 1998 .

[69]  E. Boyle,et al.  Iron, manganese, and lead at Hawaii Ocean Time-series station ALOHA: Temporal variability and an intermediate water hydrothermal plume , 2005 .

[70]  Matthew M. Mills,et al.  Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic , 2004, Nature.

[71]  Galen A. McKinley,et al.  Mechanisms of air‐sea CO2 flux variability in the equatorial Pacific and the North Atlantic , 2004 .

[72]  David M. Karl,et al.  VERTEX: carbon cycling in the northeast Pacific , 1987 .

[73]  M. Follows,et al.  Interannual variability of phytoplankton abundances in the North Atlantic , 2001 .

[74]  T. Jickells,et al.  Factors controlling the solubility of aerosol trace metals in the atmosphere and on mixing into seawater , 1995 .

[75]  N. Mahowald,et al.  Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution , 2003 .

[76]  H. D. Baar,et al.  Distributions, sources and sinks of iron in seawater , 2001 .

[77]  Nicolas Gruber,et al.  Global patterns of marine nitrogen fixation and denitrification , 1997 .

[78]  M. Follows,et al.  What controls the uptake of transient tracers in the Southern Ocean? , 2004 .

[79]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic , 1988, Nature.

[80]  J. H. Martin,et al.  Iron in north-east Pacific waters , 1982, Nature.

[81]  K. Timmermans,et al.  Fe (III) speciation in the high nutrient, low chlorophyll Pacific region of the Southern Ocean , 1998 .

[82]  M. Suter,et al.  Increased biological productivity and export production in the glacial Southern Ocean , 1995, Nature.

[83]  K. Bruland,et al.  The contrasting biogeochemistry of iron and manganese in the Pacific Ocean , 1987 .

[84]  J. Nishioka,et al.  Spatial variability of iron in the surface water of the northwestern North Pacific Ocean , 2004 .

[85]  E. Boyle,et al.  Determination of iron in seawater by high-resolution isotope dilution inductively coupled plasma mass spectrometry after Mg(OH) 2 coprecipitation , 1998 .

[86]  Corinne Le Quéré,et al.  Dust impact on marine biota and atmospheric CO2 in glacial periods , 2003 .

[87]  V. Smetácek,et al.  Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean , 1995, Nature.

[88]  John E Andrews,et al.  The Effects of Iron Fertilization on Carbon Sequestration in the Southern Ocean , 2004, Science.

[89]  Scott C. Doney,et al.  Evaluating global ocean carbon models: The importance of realistic physics , 2004 .

[90]  P. Valdes,et al.  Simulations of the Last Glacial Maximum climates using a general circulation model: prescribed versus computed sea surface temperatures , 1998 .

[91]  K. Johnson,et al.  Iron deficiency and phytoplankton growth in the equatorial Pacific , 1996 .

[92]  C. Ridame,et al.  Impact of high Saharan dust inputs on dissolved iron concentrations in the Mediterranean Sea , 2002 .

[93]  S. Fitzwater,et al.  Iron in Antarctic waters , 1990, Nature.

[94]  P. Croot,et al.  Organic complexation of iron in the Southern Ocean , 2001 .

[95]  K. Timmermans,et al.  Variability in the speciation of iron in the northern North Sea , 1998 .

[96]  Marcel J. W. Veldhuis,et al.  Horizontal gradient of the chemical speciation of iron in surface waters of the northeast Atlantic Ocean , 2003 .

[97]  K. Johnson,et al.  Trace metal concentrations in the Ross Sea and their relationship with nutrients and phytoplankton growth , 2000 .

[98]  W. Large,et al.  A Global Ocean Wind Stress Climatology Based on ECMWF Analyses , 1989 .

[99]  Taro Takahashi,et al.  Southern Ocean Iron Enrichment Experiment: Carbon Cycling in High- and Low-Si Waters , 2004, Science.

[100]  P. Santschi,et al.  A Brownian-pumping model for oceanic trace metal scavenging : Evidence from Th isotopes , 1989 .

[101]  Yasuhiro Yamanaka,et al.  Role of dissolved organic matter in the marine biogeochemical cycle: Studies using an ocean biogeochemical general circulation model , 1997 .

[102]  P. Sedwick,et al.  Regulation of algal blooms in Antarctic Shelf Waters by the release of iron from melting sea ice , 1997 .

[103]  P. Worsfold,et al.  Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean , 2003 .

[104]  J. Sarmiento,et al.  Inputs, losses and transformations of nitrogen and phosphorus in the pelagic North Atlantic Ocean , 1996 .

[105]  M. Follows,et al.  Interannual variability of air‐sea O2 fluxes and the determination of CO2 sinks using atmospheric O2/N2 , 2003 .

[106]  D. Hutchins,et al.  Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime , 1998, Nature.

[107]  S. Vink,et al.  Seasonal variations in the distribution of Fe and Al in the surface waters of the Arabian Sea , 1999 .

[108]  Scott C. Doney,et al.  Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models , 2002 .

[109]  K. Coale,et al.  The flux of iron from continental shelf sediments: A missing source for global budgets , 2004 .

[110]  F. Millero,et al.  The solubility of iron in seawater , 2002 .

[111]  S. J. Tanner,et al.  Surface ocean‐lower atmosphere interactions in the Northeast Pacific Ocean Gyre: Aerosols, iron, and the ecosystem response , 2003 .

[112]  D. Sigman,et al.  Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period , 1997, Nature.

[113]  J. Cowen,et al.  Reactive trace metals in the stratified central North Pacific , 1994 .

[114]  S. Levitus,et al.  World ocean atlas 2001. Volume 4, Nutrients , 2002 .

[115]  Raphael Kudela,et al.  A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean , 1996, Nature.

[116]  Martha Gledhill,et al.  Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry , 1994 .

[117]  G. Luther,et al.  Spatial and temporal distribution of iron in the surface water of the northwestern Atlantic Ocean , 1996 .

[118]  K. Bruland,et al.  The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment , 1997 .

[119]  W. K. Johnson,et al.  Size-fractionated iron concentrations in the northeast Pacific Ocean : distribution of soluble and small colloidal iron , 2001 .

[120]  G. Luther,et al.  Size‐fractionated iron concentrations in the water column of the western North Atlantic Ocean , 1994 .

[121]  Watson W. Gregg,et al.  Phytoplankton and iron: validation of a global three-dimensional ocean biogeochemical model , 2003 .

[122]  S. Doney,et al.  Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean , 2001 .

[123]  Stéphane Blain,et al.  An ecosystem model of the global ocean including Fe, Si, P colimitations , 2003 .

[124]  A. Watson,et al.  Modeling the geochemical cycle of iron in the oceans and its impact on atmospheric CO2 concentrations , 1999 .

[125]  Kenneth S. Johnson,et al.  Marine Chemistry Discussion Paper What controls dissolved iron concentrations in the world ocean , 1997 .

[126]  J. Nishioka,et al.  Controls on iron(III) hydroxide solubility in seawater: The influence of pH and natural organic chelators , 1996 .

[127]  E. Boyle,et al.  Soluble and Colloidal Iron in the Oligotrophic North Atlantic and North Pacific , 2001, Science.

[128]  P. Falkowski,et al.  Seasonal distributions of aeolian iron fluxes to the global ocean , 2001 .

[129]  P. Sedwick,et al.  Iron and manganese in surface waters of the Australian subantarctic region , 1997 .

[130]  Jorge L. Sarmiento,et al.  Redfield ratios of remineralization determined by nutrient data analysis , 1994 .

[131]  K. Bruland,et al.  Improved method for shipboard determination of iron in seawater by flow injection analysis , 2002 .

[132]  S. Doney,et al.  An intermediate complexity marine ecosystem model for the global domain , 2001 .

[133]  H. Kawakami,et al.  Spatial variability of Fe(III) hydroxide solubility in the water column of the northern North Pacific Ocean , 1998 .

[134]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[135]  P. Tréguer,et al.  A biogeochemical study of the island mass effect in the context of the iron hypothesis : Kerguelen Islands, Southern Ocean , 2001 .

[136]  K. Johnson,et al.  A model of the iron cycle in the ocean , 2000 .

[137]  S. Vink,et al.  The role of dust deposition in determining surface water distributions of Al and Fe in the South West Atlantic , 2001 .

[138]  G. Kattner,et al.  Dissolved iron at subnanomolar levels in the Southern Ocean as determined by ship-board analysis , 1998 .

[139]  S. Doney,et al.  Iron supply and demand in the upper ocean , 2000 .

[140]  P. Worsfold,et al.  Biogeochemistry of Fe and other trace elements (Al, Co, Ni) in the upper Atlantic Ocean , 2002 .

[141]  William Miller,et al.  The decline and fate of an iron-induced subarctic phytoplankton bloom , 2004, Nature.

[142]  S. Saitoh,et al.  Variation in iron(III) solubility and iron concentration in the northwestern North Pacific Ocean , 2002 .

[143]  Charles S. Zender,et al.  Interannual variability in atmospheric mineral aerosols from a 22‐year model simulation and observational data , 2003 .

[144]  P. Tréguer,et al.  Iron and manganese in the wake of the Kerguelen Islands (Southern Ocean) , 2001 .

[145]  R. T. Powell,et al.  Organic complexation and speciation of iron in the South and Equatorial Atlantic , 2001 .

[146]  Koji Suzuki,et al.  The distribution of Fe in the Australian sector of the Southern Ocean , 2000 .

[147]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[148]  E. Boyle,et al.  Modeling the global ocean iron cycle , 2004 .