A Transient-Suppressing Initialization for Low-Bandwidth Attitude Controllers

The use of low-bandwidth attitude controllers is a standard solution for spacecraft facing tight frequency-domain requirements for attitude-stable payloads and platforms. However, such controllers ...

[1]  Mark Karpenko,et al.  A simple approach for predicting time-optimal slew capability , 2016 .

[2]  Feng Zhu,et al.  Optimal control of hybrid switched systems: A brief survey , 2015, Discret. Event Dyn. Syst..

[3]  Allan Y. Lee,et al.  Inflight Performance of Cassini Reaction Wheel Bearing Drag in 1997-2013 , 2013 .

[4]  João P. Hespanha,et al.  On controller initialization in multivariable switching systems , 2012, Autom..

[5]  Manoranjan Majji,et al.  Time-Varying Deadbeat Controller Design , 2012 .

[6]  Gregory Stewart,et al.  Quadratic optimization for controller initialization in multivariable switching systems , 2010, Proceedings of the 2010 American Control Conference.

[7]  Yanze Hou,et al.  Stability Analysis of Switched Linear Systems with Locally Overlapped Switching Law , 2010 .

[8]  H. Kwakernaak Feedback Systems , 1972, Encyclopedia of Database Systems.

[9]  João Pedro Hespanha,et al.  Optimal controller initialization for switching between stabilizing controllers , 2007, 2007 46th IEEE Conference on Decision and Control.

[10]  Fred Y. Hadaegh,et al.  Stability Analysis of Switched Dynamical Systems with State-Space Dilation and Contraction , 2006 .

[11]  Alberto Bemporad,et al.  Optimal control of continuous-time switched affine systems , 2006, IEEE Transactions on Automatic Control.

[12]  Carlos M. Roithmayr,et al.  Attitude and Orbit Control of a Very Large Geostationary Solar Power Satellite , 2005 .

[13]  Keck Voon Ling,et al.  H ∞ Inverse Optimal Attitude-Tracking Control of Rigid Spacecraft , 2005 .

[14]  Walter Fichter,et al.  LISA Pathfinder drag-free control and system implications , 2005 .

[15]  Walter Fichter,et al.  Feedback Controller Design for the Basic Science Mode of the LISA Pathfinder Mission , 2004 .

[16]  Panos J. Antsaklis,et al.  Optimal control of switched systems based on parameterization of the switching instants , 2004, IEEE Transactions on Automatic Control.

[17]  Olav Egeland,et al.  State feedback H∞-suboptimal control of a rigid spacecraft , 1997, IEEE Trans. Autom. Control..

[18]  Juang Jer-Nan,et al.  Recursive Deadbeat Controller Design , 1997 .

[19]  Frank H. Bauer,et al.  Classical and robust H(infinity) control redesign for the Hubble Space Telescope , 1992 .

[20]  Qiang Liu,et al.  Robust Time-Optimal Control of Uncertain Flexible Spacecraft , 1992 .

[21]  Arthur E. Ryson,et al.  Efficient Algorithm for Time-Optimal Control of a Two-Link Manipulator , 1990 .

[22]  P. Van Dooren,et al.  A numerical method for deadbeat control of generalized state-space systems , 1988 .

[23]  Donald E. Knuth,et al.  Big Omicron and big Omega and big Theta , 1976, SIGA.

[24]  Vladimír Kucera,et al.  State space approach to discrete linear control , 1972, Kybernetika.