Ultrathin body SiGe-on-insulator pMOSFETs with high-mobility SiGe surface channels

A novel concept and a fabrication technique of strained SiGe-on-insulator (SGOI) pMOSFET are proposed and demonstrated. This device has an ultrathin strained SiGe channel layer, which is directly sandwiched by gate oxide and buried oxide layers. The mobility enhancement of 2.3 times higher than the universal mobility of conventional universal Si pMOSFETs was obtained for a pMOSFET with 19-nm-thick Si/sub 0.58/Ge/sub 0.42/ channel layer, which is formed by high-temperature oxidation of a Si/sub 0.9/Ge/sub 0.1/ layer grown on a Si-on-insulator (SOI) substrate. A fully depleted SGOI MOSFET with this simple single-layer body structure is promising for scaled SOI p-MOSFET with high current drive.

[1]  Kang L. Wang,et al.  Wet oxidation of GeSi strained layers by rapid thermal processing , 1990 .

[2]  Influence of technological parameters on the behavior of the hole effective mass in SiGe structures , 2000 .

[3]  T. Tezuka,et al.  High-performance strained Si-on-insulator MOSFETs by novel fabrication processes utilizing Ge-condensation technique , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).

[4]  R. Elliman,et al.  Electrical properties of GeSi surface- and buried-channel p-MOSFETs fabricated by Ge implantation , 1996 .

[5]  S. Takagi,et al.  On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration , 1994 .

[6]  F. Stern,et al.  Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit , 1967 .

[7]  F. H. Dacol,et al.  Measurements of alloy composition and strain in thin GexSi1−x layers , 1994 .

[8]  K. Saraswat,et al.  Germanium MOS capacitors incorporating ultrathin high-/spl kappa/ gate dielectric , 2002, IEEE Electron Device Letters.

[9]  D. Harame,et al.  SiGe-channel heterojunction p-MOSFET's , 1994 .

[10]  J. Bokor,et al.  Nanoscale ultra-thin-body silicon-on-insulator P-MOSFET with a SiGe/Si heterostructure channel , 2000, IEEE Electron Device Letters.

[11]  Vogl,et al.  Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates. , 1993, Physical review. B, Condensed matter.

[12]  Shinichi Takagi Subband Structure Engineering for Realizing Scaled CMOS with High Performance and Low Power Consumption , 2002 .

[13]  Supika Mashiro,et al.  Enhanced performance in sub-100 nm CMOSFETs using strained epitaxial silicon-germanium , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[14]  S. Banerjee,et al.  Transconductance improvement in surface-channel SiGe p-metal-oxide-silicon field-effect transistors using a ZrO2 gate dielectric , 2001 .

[15]  Effective mobilities in pseudomorphic Si/SiGe/Si p-channel metal-oxide-semiconductor field-effect transistors with thin silicon capping layers , 2001 .

[16]  A. Chin,et al.  High temperature formed SiGe p-MOSFETs with good device characteristics , 2000, IEEE Electron Device Letters.

[17]  D. Antoniadis,et al.  Design of Si/SiGe heterojunction complementary metal-oxide-semiconductor transistors , 1996 .

[18]  P. Solomon,et al.  A gate-quality dielectric system for SiGe metal-oxide-semiconductor devices , 1991, IEEE Electron Device Letters.

[19]  Chenming Hu,et al.  Ultrathin-body SOI MOSFET for deep-sub-tenth micron era , 2000, IEEE Electron Device Letters.

[20]  Shinichi Takagi,et al.  A Novel Fabrication Technique of Ultrathin and Relaxed SiGe Buffer Layers with High Ge Fraction for Sub-100 nm Strained Silicon-on-Insulator MOSFETs , 2000 .