Similarity measures based on Gaussian‐type promolecular electron density models: Alignment of small rigid molecules

Various molecular similarity measures (overlap, Coulomb, kinetic, electrostatic energy) and similarity indices (Carbó, Hodgkin–Richards, Kulczynski, Shape Tanimoto) are applied to the superposition of 3D promolecular electron density (PED) distributions. The original aspect of the paper lies in the consideration of smoothed PEDs, which allow to decrease the number of local solutions to a superposition problem, together with the use of the less common kinetic and electrostatic energy similarity measures. Results are obtained for a family of five rigid endothiapepsin ligands that were already considered in previous applications, based on graph representations of their PED. In the present work, it is observed that the use of smoothed PED and the kinetic similarity measure, together with the Kulczynski or Shape Tanimoto index, performed the best to align molecules of different sizes. © 2006 Wiley Periodicals, Inc. J Comput Chem, 2006

[1]  J. Cooper,et al.  A structural comparison of 21 inhibitor complexes of the aspartic proteinase from Endothia parasitica , 1994, Protein science : a publication of the Protein Society.

[2]  Kun Wang,et al.  Gaussian mapping of chemical fragments in ligand binding sites , 2004, J. Comput. Aided Mol. Des..

[3]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .

[4]  Gustavo A. Arteca,et al.  Shape groups of the electronic isodensity surfaces for small molecules: Shapes of 10‐electron hydrides , 1993, J. Comput. Chem..

[5]  Jay W. Ponder,et al.  Exploring the similarities between potential smoothing and simulated annealing , 2000 .

[6]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[7]  W. Schwarz,et al.  Electron Density and Chemical Bonding: The Shape of Independent Atoms in Molecules , 1992 .

[8]  U. Pietsch,et al.  Critical Points in a Crystal and Procrystal , 1998 .

[9]  L. Leherte Application of multiresolution analyses to electron density maps of small molecules: Critical point representations for molecular superposition , 2001 .

[10]  W. G. Richards,et al.  Rapid evaluation of shape similarity using Gaussian functions , 1993, J. Chem. Inf. Comput. Sci..

[11]  Paul G. Mezey,et al.  Toward similarity measures for macromolecular bodies: Medla test calculations for substituted benzene systems , 1995, J. Comput. Chem..

[12]  Patrick Bultinck,et al.  Quantum Similarity Superposition Algorithm (QSSA): A Consistent Scheme for Molecular Alignment and Molecular Similarity Based on Quantum Chemistry , 2003, J. Chem. Inf. Comput. Sci..

[13]  B. Masek,et al.  Molecular skins: A new concept for quantitative shape matching of a protein with its small molecule mimics , 1993, Proteins.

[14]  K. Rosso,et al.  A comparison of procrystal and ab initio model representations of the electron-density distributions of minerals , 2002 .

[15]  Daniel P. Vercauteren,et al.  Influence of conformation on the representation of small flexible molecules at low resolution: alignment of endothiapepsin ligands , 2005, J. Comput. Aided Mol. Des..

[16]  G. Maggiora,et al.  Comparing protein structures: a Gaussian-based approach to the three-dimensional structural similarity of proteins. , 2001, Journal of molecular graphics & modelling.

[17]  Paul G. Mezey,et al.  Ab Initio Quality Electron Densities for Proteins: A MEDLA Approach , 1994 .

[18]  Ramon Carbó-Dorca,et al.  Molecular Electronic Density Fitting Using Elementary Jacobi Rotations under Atomic Shell Approximation , 2000, J. Chem. Inf. Comput. Sci..

[19]  Pravin K. Bhadane,et al.  Molecular Recognition via Electrostatic Potential Topography , 1996 .

[20]  John M. Barnard,et al.  Chemical Similarity Searching , 1998, J. Chem. Inf. Comput. Sci..

[21]  L. Fernandez Pacios Simple analytical representation of atomic electron charge densities, electrostatic potentials, and local exchange potentials , 1992 .

[22]  Alan J. McMahon,et al.  Optimization of Carbó molecular similarity index using gradient methods , 1997 .

[23]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[24]  Jordi Mestres,et al.  The use of ab initio quantum molecular self‐similarity measures to analyze electronic charge density distributions , 1998 .

[25]  E. Belokoneva,et al.  X-ray and Electron Diffraction Study of MgO , 1998 .

[26]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[27]  Jordi Mestres,et al.  Putting molecular similarity into context: asymmetric indices for field-based similarity measures , 2006 .

[28]  Anthony Nicholls,et al.  Variable selection and model validation of 2D and 3D molecular descriptors> , 2004, J. Comput. Aided Mol. Des..

[29]  Peter Politzer,et al.  Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes , 1990 .

[30]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[31]  Ramon Carbó-Dorca,et al.  Toward a global maximization of the molecular similarity function: Superposition of two molecules , 1997 .

[32]  A. Olson,et al.  Shape analysis of molecular surfaces , 1993, Biopolymers.

[33]  David Robert,et al.  A Formal Comparison between Molecular Quantum Similarity Measures and Indices , 1998, J. Chem. Inf. Comput. Sci..

[34]  Jordi Mestres,et al.  A General Analysis of Field-Based Molecular Similarity Indices , 2002 .

[35]  E. Davidson,et al.  One- and two-electron integrals over cartesian gaussian functions , 1978 .

[36]  Mark A. Spackman,et al.  Chemical properties from the promolecule , 1986 .

[37]  X Gironés,et al.  Application of promolecular ASA densities to graphical representation of density functions of macromolecular systems. , 2001, Journal of molecular graphics & modelling.

[38]  J. A. Grant,et al.  Gaussian shape methods , 1997 .

[39]  J. A. Grant,et al.  A fast method of molecular shape comparison: A simple application of a Gaussian description of molecular shape , 1996, J. Comput. Chem..

[40]  Curt M. Breneman,et al.  Transferable atom equivalent multicentered multipole expansion method , 2003, J. Comput. Chem..

[41]  X Gironés,et al.  A comparative study of isodensity surfaces using ab initio and ASA density functions. , 1998, Journal of molecular graphics & modelling.

[42]  C. Lemmen,et al.  FLEXS: a method for fast flexible ligand superposition. , 1998, Journal of medicinal chemistry.

[43]  Ramon Carbó-Dorca,et al.  Quantum similarity measures under atomic shell approximation: First order density fitting using elementary Jacobi rotations , 1997 .

[44]  M. Leboeuf,et al.  Topological analysis of the molecular electrostatic potential , 1999 .

[45]  Gerhard Klebe,et al.  Methodological developments and strategies for a fast flexible superposition of drug-size molecules , 1999, J. Comput. Aided Mol. Des..

[46]  Jay W. Ponder,et al.  Analysis and Application of Potential Energy Smoothing and Search Methods for Global Optimization , 1998 .

[47]  Andrew C. Good,et al.  Utilization of Gaussian functions for the rapid evaluation of molecular similarity , 1992, J. Chem. Inf. Comput. Sci..

[48]  P Coppens,et al.  Chemical applications of X-ray charge-density analysis. , 2001, Chemical reviews.

[49]  H. Scheraga,et al.  Performance of the diffusion equation method in searches for optimum structures of clusters of Lennard-Jones atoms , 1991 .

[50]  Z. Maksić,et al.  Diamagnetic susceptibilities in some linear van der Waals complexes using the promolecule model , 1986 .

[51]  Ramon Carbó-Dorca,et al.  Modeling Large Macromolecular Structures Using Promolecular Densities , 2002, J. Chem. Inf. Comput. Sci..

[52]  Paul G. Mezey,et al.  Ab initio quality properties for macromolecules using the ADMA approach , 2003, J. Comput. Chem..

[53]  Peter Politzer,et al.  Proposed procedure for using electrostatic potentials to predict and interpret nucleophilic processes , 1982 .

[54]  D. P. Vercauteren,et al.  Structural identification of local maxima in low-resolution promolecular electron density distributions , 2003 .

[55]  Shridhar R. Gadre,et al.  Maximal and minimal characteristics of molecular electrostatic potentials , 1990 .

[56]  Shridhar R. Gadre,et al.  Ab initio quality one‐electron properties of large molecules: Development and testing of molecular tailoring approach , 2003, J. Comput. Chem..

[57]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[58]  L. Pacios,et al.  Analytic atomic electron densities in molecular self-similarity measures and electrostatic potentials , 1998 .

[59]  M. Spackman,et al.  Molecular surfaces from the promolecule: A comparison with Hartree–Fock ab initio electron density surfaces , 2000 .

[60]  J. A. Grant,et al.  A Gaussian Description of Molecular Shape , 1995 .

[61]  W. Richards,et al.  Identification of ligand binding sites on proteins using a multi-scale approach. , 2002, Journal of the American Chemical Society.

[62]  C. Lecomte,et al.  Characterization of intra-framework and guest/host interactions in the AlPO4-15 molecular sieve by charge-density analysis. , 2003, Acta crystallographica. Section B, Structural science.

[63]  Oliviero Carugo,et al.  How root-mean-square distance (r.m.s.d.) values depend on the resolution of protein structures that are compared , 2003 .

[64]  Meir Glick,et al.  Docking of flexible molecules using multiscale ligand representations. , 2002, Journal of medicinal chemistry.