Target Cascading in Optimal System Design

Target cascading is a key challenge in the early product development stages of large complex artifacts: how to propagate the desirable top level design specifications (or targets) to appropriate specifications for the various subsystems and components in a consistent and efficient manner. Consistency means that all parts of the designed system should work well together, while efficiency means that the process itself should avoid iterations at later stages, which are costly in time and resources. In the present article target cascading is formalized by a process modeled as a multilevel optimal design problem. Design targets are cascaded down to lower levels using partitioning of the original problem into a hierarchical set of subproblems. For each design problem at a given level, an optimisation problem is formulated to minimize deviations from the propagated targets and thus achieve intersystem compatibility. A coordination strategy links all subproblem decisions so that the overall system performance targets are met. The process is illustrated with an explicit analytical problem and a simple automotive chassis design model that demonstrates how the process can be applied in practice.

[1]  Douglass J. Wilde,et al.  Foundations of Optimization. , 1967 .

[2]  K. Huebner The finite element method for engineers , 1975 .

[3]  Uri Kirsch,et al.  Multilevel Approach to Optimum Structural Design , 1975 .

[4]  R. A. Cuninghame-Green,et al.  Applied geometric programming , 1976 .

[5]  Shih-Ping Han,et al.  Superlinearly convergent variable metric algorithms for general nonlinear programming problems , 1976, Math. Program..

[6]  M. J. D. Powell,et al.  THE CONVERGENCE OF VARIABLE METRIC METHODS FOR NONLINEARLY CONSTRAINED OPTIMIZATION CALCULATIONS , 1978 .

[7]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[8]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[9]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[10]  R. Haftka An Improved Computational Approach for Multilevel Optimum Design , 1984 .

[11]  Yacov Y. Haimes,et al.  The convergence properties of hierarchical overlapping coordination , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  J. Sobieszczanski-Sobieski,et al.  Structural optimization by multilevel decomposition , 1983 .

[13]  Ya-Xiang Yuan,et al.  Conditions for convergence of trust region algorithms for nonsmooth optimization , 1985, Math. Program..

[14]  G. Vanderplaats,et al.  Efficient calculation of optimum design sensitivity , 1984 .

[15]  Uri Klrtch An Improved Multilevel Structural Synthesis Method , 1985 .

[16]  Daniel G. Bobrow,et al.  Beyond the chalkboard: computer support for collaboration and problem solving in meetings , 1988, CACM.

[17]  Jaroslaw Sobieszczanski-Sobieski,et al.  Structural sizing by generalized, multilevel optimization , 1987 .

[18]  Panos Y. Papalambros,et al.  Principles of Optimal Design: Modeling and Computation , 1988 .

[19]  J. Barthelemy,et al.  Improved multilevel optimization approach for the design of complex engineering systems , 1988 .

[20]  Yacov Y. Haimes,et al.  Hierarchical multiobjective analysis for large-scale systems: Review and current status , 1988, Autom..

[21]  S. Azarm,et al.  A TWO-LEVEL DECOMPOSITION METHOD FOR DESIGN OPTIMIZATION , 1988 .

[22]  J.-F. M. Barthelemy,et al.  Engineering Applications of Heuristic Multilevel Optimization Methods , 1989 .

[23]  Charles J. Malmborg,et al.  Integrating logistical and processing functions through mathematical modelling: A case study , 1989 .

[24]  J. Pan,et al.  Some results in optimization of non-hierarchic systems , 1990 .

[25]  J. Stressing System-level design tools , 1989 .

[26]  R. Haftka,et al.  Efficient single-level solution of hierarchical problems in structural optimization , 1990 .

[27]  Yoji Akao,et al.  Quality Function Deployment : Integrating Customer Requirements into Product Design , 1990 .

[28]  Henry L. Tosi A Theory of Goal Setting and Task Performance , 1991 .

[29]  M W Sayers,et al.  Painless derivation and programming of equations of motion for vehicle dynamics , 1992 .

[30]  T D Gillespie,et al.  Fundamentals of Vehicle Dynamics , 1992 .

[31]  J. Sobieszczanski-Sobieski Two alternative ways for solving the coordination problem in multilevel optimization , 1993 .

[32]  G. A. Gabriele,et al.  Improved coordination in nonhierarchic system optimization , 1993 .

[33]  N. Alexandrov Multilevel algorithms for nonlinear equations and equality constrained optimization , 1993 .

[34]  Terrance Carl Wagner,et al.  A general decomposition methodology for optimal system design. , 1993 .

[35]  J. Renaud,et al.  Approximation in nonhierarchic system optimization , 1994 .

[36]  John E. Dennis,et al.  Problem Formulation for Multidisciplinary Optimization , 1994, SIAM J. Optim..

[37]  Kroo Ilan,et al.  Multidisciplinary Optimization Methods for Aircraft Preliminary Design , 1994 .

[38]  P. J. Gage,et al.  New approaches to optimization in aerospace conceptual design , 1995 .

[39]  Panos Y. Papalambros,et al.  Optimal model-based decomposition of powertrain system design , 1995 .

[40]  Leonard E. Miller,et al.  NASA systems engineering handbook , 1995 .

[41]  Robert D. Braun,et al.  Collaborative optimization: an architecture for large-scale distributed design , 1996 .

[42]  Ilan Kroo,et al.  Use of the Collaborative Optimization Architecture for Launch Vehicle Design , 1996 .

[43]  P. Papalambros,et al.  Sequentially decomposed programming , 1997 .

[44]  Sigurd Anthony Nelson Optimal hierarchical system design via sequentially decomposed programming. , 1997 .

[45]  John E. Renaud,et al.  Multiobjective Collaborative Optimization , 1997 .

[46]  P. Papalambros,et al.  Optimal hierarchical decomposition synthesis using integer programming , 1997 .

[47]  I. Kroo,et al.  Response surface estimation and refinement in collaborative optimization , 1998 .

[48]  Ian Patrick Sobieski,et al.  Multidisciplinary design using collaborative optimization , 1998 .

[49]  Panos Y. Papalambros,et al.  A SYSTEM PARTITIONING AND OPTIMIZATION APPROACH TO TARGET CASCADING , 1999 .

[50]  Devadatta M. Kulkarni,et al.  Hierarchical overlapping coordination for large-scale optimization by decomposition , 1999 .

[51]  Morten T. Hansen,et al.  The Search-Transfer Problem: The Role of Weak Ties in Sharing Knowledge across Organization Subunits , 1999 .

[52]  Jaroslaw Sobieszczanski-Sobieski,et al.  Bilevel Integrated System Synthesis with Response Surfaces , 2000 .

[53]  Richard J. Balling,et al.  Collaborative optimization with disciplinary conceptual design , 2000 .

[54]  Panos Y. Papalambros,et al.  Convergence Criteria for Hierarchical Overlapping Coordination of Linearly Constrained Convex Design Problems , 2001, Comput. Optim. Appl..

[55]  C. W. Mousseau,et al.  A Parametric Model to Generate Subsystem Constitutive Laws for a Vehicle Ride Model , 2001 .

[56]  Natalia Alexandrov,et al.  Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design , 2002 .

[57]  Panos Y. Papalambros,et al.  Convergence properties of analytical target cascading , 2002 .