Vertically Extensive Magma Reservoir Revealed From Joint Inversion and Quantitative Interpretation of Seismic and Gravity Data

Recent advances in our understanding of arc magmatic systems indicate that melt is stored for long periods in low‐melt fraction crystal mushes and that eruptible magma reservoirs are short‐lived and are assembled rapidly by buoyancy‐induced instabilities and draining of the crystal mush. Many aspects of their architecture remain unclear, particularly in relation to their geometry and shallow melt distribution. We investigate the storage of melt below the active Soufrière Hills Volcano (SHV), Montserrat, using joint geophysical inversion combined with a quantitative interpretation approach based on rock physics. We jointly inverted active‐source P‐wave traveltimes and gravity anomalies to derive coincident 3‐D models of P‐wave velocity and density to a depth of 8 km. Comparative analysis of the active SHV and extinct Centre Hills volcano and effective elastic medium computations allow us to constrain temperature, melt fraction, and melt geometry. A continuous column of partial melt is inferred beneath SHV, at 4–8 km depth. Melt fraction is ~6% (ranging from 3 to 13% depending on melt geometry) and is maximum at 5–6 km depth. When under‐recovery of the low‐vP volume is taken into account, the melt fraction is revised to ~17% (ranging from 11 to 28%). Analysis of vP/density cross plots indicates that the melt distribution is best represented by low‐aspect ratio geometries. These likely span a multiscale spectrum ranging from grain‐scale inclusions and fractures to 100‐m‐scale dykes and sills. Our results confirm the concept of vertically extensive crystal mush including one or multiple more melt‐rich layers.

[1]  R. Sparks,et al.  Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust , 2018, Nature.

[2]  A. Levander,et al.  Focusing of melt near the top of the Mount St. Helens (USA) magma reservoir and its relationship to major volcanic eruptions , 2018, Geology.

[3]  A. Rust,et al.  The Gravitational Stability of Lenses in Magma Mushes: Confined Rayleigh‐Taylor Instabilities , 2018 .

[4]  Resonance oscillations of the Soufrière Hills Volcano (Montserrat, W.I.) magmatic system induced by forced magma flow from the reservoir into the upper plumbing dike , 2017 .

[5]  R. Sparks,et al.  Vertically extensive and unstable magmatic systems: A unified view of igneous processes , 2017, Science.

[6]  Per-Olof Persson,et al.  Flow‐to‐fracture transition in a volcanic mush plug may govern normal eruptions at Stromboli , 2016 .

[7]  Cin-Ty A. Lee,et al.  Critical porosity of melt segregation during crustal melting: Constraints from zonation of peritectic garnets in a dacite volcano , 2016 .

[8]  S. Kohn,et al.  Extensive, water-rich magma reservoir beneath southern Montserrat , 2016 .

[9]  H. Iwamori,et al.  Density and seismic velocity of hydrous melts under crustal and upper mantle conditions , 2016 .

[10]  J. Hammond,et al.  Constraints on melt distribution from seismology: a case study in Ethiopia , 2016, Special Publications.

[11]  U. Faul,et al.  Grain boundary wetness of partially molten dunite , 2013, Contributions to Mineralogy and Petrology.

[12]  Imaging the magmatic system of Newberry Volcano using joint active source and teleseismic tomography , 2015 .

[13]  Federico Cella,et al.  GTeC - A versatile MATLAB® tool for a detailed computation of the terrain correction and Bouguer gravity anomalies , 2015, Comput. Geosci..

[14]  George W. Bergantz,et al.  Open-system dynamics and mixing in magma mushes , 2015 .

[15]  P. Cole,et al.  Crustal‐scale degassing due to magma system destabilization and magma‐gas decoupling at Soufrière Hills Volcano, Montserrat , 2015 .

[16]  J. Farrell,et al.  The Yellowstone magmatic system from the mantle plume to the upper crust , 2015, Science.

[17]  K. Ward,et al.  Seismic imaging of the magmatic underpinnings beneath the Altiplano-Puna volcanic complex from the joint inversion of surface wave dispersion and receiver functions , 2014 .

[18]  M. Moorkamp,et al.  Joint-Inversion of Magnetotelluric, Gravity and Seismic Data to Image Sub-Basalt Sediments Offshore the Faroe-Islands , 2014 .

[19]  R. Sparks,et al.  Evolution of major and trace element composition during melt migration through crystalline mush: Implications for chemical differentiation in the crust , 2014, American Journal of Science.

[20]  G. Waite,et al.  Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens , 2014 .

[21]  R. Sparks,et al.  Quantification of the Intrusive Magma Fluxes during Magma Chamber Growth at Soufrière Hills Volcano (Montserrat, Lesser Antilles) , 2014 .

[22]  S. Hautmann,et al.  Strain field analysis on Montserrat (W.I.) as tool for assessing permeable flow paths in the magmatic system of Soufrière Hills Volcano , 2014 .

[23]  A. Kent,et al.  Rapid remobilization of magmatic crystals kept in cold storage , 2014, Nature.

[24]  P. Brophy,et al.  Preliminary results of deep geothermal drilling and testing on the Island of Montserrat , 2014 .

[25]  J. Devine,et al.  Chapter 19 Magma storage region processes of the Soufrière Hills Volcano, Montserrat , 2014 .

[26]  J. Barclay,et al.  Chapter 18 Characterization of mafic enclaves in the erupted products of Soufrière Hills Volcano, Montserrat, 2009 to 2010 , 2014 .

[27]  B. Voight,et al.  Chapter 1 An overview of the eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010 , 2014 .

[28]  B. Voight,et al.  Chapter 15 The SEA-CALIPSO volcano imaging experiment at Montserrat: plans, campaigns at sea and on land, scientific results, and lessons learned , 2014 .

[29]  Mike Warner,et al.  Next-generation seismic experiments: wide-angle, multi-azimuth, three-dimensional, full-waveform inversion , 2013 .

[30]  J. Gottsmann,et al.  The shallow structure beneath Montserrat (West Indies) from new Bouguer gravity data , 2013 .

[31]  J. Blundy,et al.  Petrological cannibalism: the chemical and textural consequences of incremental magma body growth , 2013, Contributions to Mineralogy and Petrology.

[32]  N. Fournier,et al.  Pressure changes in the magmatic system during the December 2008/January 2009 extrusion event at Soufriere Hills Volcano, Montserrat (W.I.), derived from strain data analysis , 2013 .

[33]  R. Sparks,et al.  Melt Segregation in Deep Crustal Hot Zones: a Mechanism for Chemical Differentiation, Crustal Assimilation and the Formation of Evolved Magmas , 2012 .

[34]  Demitris Paradissis,et al.  Evolution of Santorini Volcano dominated by episodic and rapid fluxes of melt from depth , 2012 .

[35]  M. Manga,et al.  Heat flow in the Lesser Antilles island arc and adjacent back arc Grenada basin , 2012 .

[36]  M. Urlaub,et al.  Combinations of volcanic-flank and seafloor-sediment failure offshore Montserrat, and their implications for tsunami generation , 2012 .

[37]  B. Voight,et al.  Magma chamber properties from integrated seismic tomography and thermal modeling at Montserrat , 2012 .

[38]  P. Gori,et al.  Evidence for the contemporary magmatic system beneath Long Valley Caldera from local earthquake tomography and receiver function analysis , 2011 .

[39]  A. Malcolm,et al.  Tomographic errors from wave front healing: more than just a fast bias , 2011 .

[40]  A. Roberts,et al.  A framework for 3-D joint inversion of MT, gravity and seismic refraction data , 2011 .

[41]  F. Costa,et al.  Time Constraints from Chemical Equilibration in Magmatic Crystals , 2010 .

[42]  M. Edmonds,et al.  Magma hybridisation and diffusive exchange recorded in heterogeneous glasses from Soufrière Hills Volcano, Montserrat , 2010 .

[43]  B. Voight,et al.  Contrasts in morphology and deformation offshore Montserrat: New insights from the SEA‐CALIPSO marine cruise data , 2010 .

[44]  R. Sparks,et al.  Three‐dimensional seismic velocity tomography of Montserrat from the SEA‐CALIPSO offshore/onshore experiment , 2010 .

[45]  T. Minshull,et al.  Constraints on an intrusive system beneath the Soufriére Hills Volcano, Montserrat, from finite difference modeling of a controlled source seismic experiment , 2010 .

[46]  B. Voight,et al.  Reflection imaging of deep structure beneath Montserrat using microearthquake sources , 2010 .

[47]  B. Voight,et al.  Magma‐sponge hypothesis and stratovolcanoes: Case for a compressible reservoir and quasi‐steady deep influx at Soufrière Hills Volcano, Montserrat , 2010 .

[48]  J. Gottsmann,et al.  Effect of mechanical heterogeneity in arc crust on volcano deformation with application to Soufrière Hills Volcano, Montserrat, West Indies , 2010 .

[49]  A. Roberts,et al.  Massively parallel forward modeling of scalar and tensor gravimetry data , 2010, Comput. Geosci..

[50]  B. Voight,et al.  Crustal structure beneath Montserrat, Lesser Antilles, constrained by xenoliths, seismic velocity structure and petrology , 2010 .

[51]  A. Donovan,et al.  Caught in the act: Implications for the increasing abundance of mafic enclaves during the recent eruptive episodes of the Soufrière Hills Volcano, Montserrat , 2010 .

[52]  B. Voight,et al.  Upper crustal structure of an active volcano from refraction/reflection tomography, Montserrat, Lesser Antilles , 2010 .

[53]  L. Caricchi,et al.  Propagation of P and S-waves in magmas with different crystal contents: Insights into the crystallinity of magmatic reservoirs , 2008 .

[54]  B. Voight,et al.  Implications of Magma Transfer Between Multiple Reservoirs on Eruption Cycling , 2008, Science.

[55]  Brian Baptie,et al.  Seismic Monitoring of the Soufrière Hills Volcano, Montserrat , 2007 .

[56]  B. Romanowicz,et al.  Deep Earth Structure: Q of the Earth from Crust to Core , 2007 .

[57]  M. Holness Melt–Solid Dihedral Angles of Common Minerals in Natural Rocks , 2006 .

[58]  G. Dresen,et al.  Influence of water fugacity and activation volume on the flow properties of fine‐grained anorthite aggregates , 2006 .

[59]  Jurgen Neuberg,et al.  Unprecedented pressure increase in deep magma reservoir triggered by lava‐dome collapse , 2006 .

[60]  B. Ildefonse,et al.  Temperature dependence of shear wave attenuation in partially molten gabbronorite at seismic frequencies , 2005 .

[61]  T. Brocher Empirical relations between elastic wavespeeds and density in the Earth's crust , 2005 .

[62]  P. Wallace Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data , 2005 .

[63]  M. Meju,et al.  Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints , 2004 .

[64]  R. Sparks,et al.  Geomorphological evolution of Montserrat (West Indies): importance of flank collapse and erosional processes , 2004, Journal of the Geological Society.

[65]  G. Abers,et al.  Subduction Factory 3: An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature , 2004 .

[66]  R. Sparks,et al.  Geochemical Evolution of the Soufrière Hills Volcano, Montserrat, Lesser Antilles Volcanic Arc , 2003 .

[67]  S. Lee,et al.  Thermal structure of the North American uppermost mantle inferred from seismic tomography , 2002 .

[68]  Yasuko Takei,et al.  Effect of pore geometry on VP/VS: From equilibrium geometry to crack , 2002 .

[69]  R. Sparks,et al.  The volcanic evolution of Montserrat using 40Ar/39Ar geochronology , 2002, Geological Society, London, Memoirs.

[70]  S. Solomon,et al.  Three‐dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9°30'N , 2000 .

[71]  W. Hammond,et al.  Upper mantle seismic wave attenuation: Effects of realistic partial melt distribution , 2000 .

[72]  Murphy,et al.  Control on the emplacement of the andesite lava dome of the Soufriere Hills volcano, Montserrat by degassing‐induced crystallization , 2000 .

[73]  M. D. Murphy,et al.  Remobilization of Andesite Magma by Intrusion of Mafic Magma at the Soufriere Hills Volcano, Montserrat, West Indies , 2000 .

[74]  M. D. Murphy,et al.  Petrologic evidence for pre‐eruptive pressure‐temperature conditions, and recent reheating, of andesitic magma erupting at the Soufriere Hills Volcano, Montserrat, W.I. , 1998 .

[75]  D. Mainprice Modelling the anisotropic seismic properties of partially molten rocks found at mid-ocean ridges , 1997 .

[76]  D. Oldenburg,et al.  3-D inversion of gravity data , 1998 .

[77]  M. Nakamura Continuous mixing of crystal mush and replenished magma in the ongoing Unzen eruption , 1995 .

[78]  P. Richet,et al.  Rheology of crystal-bearing silicate melts : an experimental study at high viscosities , 1995 .

[79]  S. Karato,et al.  Importance of anelasticity in the interpretation of seismic tomography , 1993 .

[80]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[81]  P. Podvin,et al.  Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools , 1991 .

[82]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[83]  H. Schmeling,et al.  Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks. Part I: elasticity and anelasticity , 1985 .

[84]  H. Kern,et al.  Elastic wave velocities in rocks from a lower crustal section in southern Calabria (Italy) , 1985 .

[85]  W. Johannes Beginning of melting in the granite system Qz-Or-Ab-An-H2O , 1984 .

[86]  Stephen J. Bauer,et al.  Thermal expansion and cracking of three confined water-saturated igneous rocks to 800°C , 1983 .

[87]  Y. Caristan The transition from high temperature creep to fracture in Maryland diabase , 1982 .

[88]  James G. Berryman,et al.  Long‐wavelength propagation in composite elastic media II. Ellipsoidal inclusions , 1980 .

[89]  James G. Berryman,et al.  Long‐wavelength propagation in composite elastic media I. Spherical inclusions , 1980 .

[90]  Gerald M. Mavko,et al.  Velocity and attenuation in partially molten rocks , 1980 .

[91]  N. Christensen Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradients, and crustal low‐velocity zones , 1979 .

[92]  J. Korringa,et al.  Self‐consistent imbedding and the ellipsoidal model for porous rocks , 1979 .

[93]  B. Chappell,et al.  Crystallization, fractionation and solidification of the Tuolumne intrusive series, Yosemite National Park, California , 1979 .

[94]  Susan Werner Kieffer,et al.  Sound Speed in Liquid-Gas Mixtures' Water-Air and Water-Steam , 1977 .

[95]  D. Chung Elastic moduli of single crystal and polycrystalline MgO , 1963 .

[96]  S. Shtrikman,et al.  Note on a variational approach to the theory of composite elastic materials , 1961 .

[97]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[98]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.