Disentangling neural cell diversity using single-cell transcriptomics

Cellular specialization is particularly prominent in mammalian nervous systems, which are composed of millions to billions of neurons that appear in thousands of different 'flavors' and contribute to a variety of functions. Even in a single brain region, individual neurons differ greatly in their morphology, connectivity and electrophysiological properties. Systematic classification of all mammalian neurons is a key goal towards deconstructing the nervous system into its basic components. With the recent advances in single-cell gene expression profiling technologies, it is now possible to undertake the enormous task of disentangling neuronal heterogeneity. High-throughput single-cell RNA sequencing and multiplexed quantitative RT-PCR have become more accessible, and these technologies enable systematic categorization of individual neurons into groups with similar molecular properties. Here we provide a conceptual and practical guide to classification of neural cell types using single-cell gene expression profiling technologies.

[1]  Andrew McDavid,et al.  Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments , 2012, Bioinform..

[2]  Zhigang Xue,et al.  Simultaneous profiling of transcriptome and DNA methylome from a single cell , 2016, Genome Biology.

[3]  Ramesh Ramakrishnan,et al.  High Throughput Gene Expression Measurement with Real Time PCR in a Microfluidic Dynamic Array , 2008, PloS one.

[4]  Asif U. Tamuri,et al.  Genome sequencing of normal cells reveals developmental lineages and mutational processes , 2014, Nature.

[5]  P. Sieving,et al.  Double homozygous waltzer and Ames waltzer mice provide no evidence of retinal degeneration , 2008, Molecular vision.

[6]  Rhonda Bacher,et al.  Design and computational analysis of single-cell RNA-sequencing experiments , 2016, Genome Biology.

[7]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[8]  Staci A. Sorensen,et al.  Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics , 2016 .

[9]  Paola Arlotta,et al.  Generating neuronal diversity in the mammalian cerebral cortex. , 2015, Annual review of cell and developmental biology.

[10]  Nathan C. Klapoetke,et al.  Transgenic Mice for Intersectional Targeting of Neural Sensors and Effectors with High Specificity and Performance , 2015, Neuron.

[11]  N. Neff,et al.  Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq , 2016, Nature.

[12]  James A. Gagnon,et al.  Whole-organism lineage tracing by combinatorial and cumulative genome editing , 2016, Science.

[13]  Kevin T. Beier,et al.  Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors , 2011, Proceedings of the National Academy of Sciences.

[14]  Åsa K. Björklund,et al.  Tn5 transposase and tagmentation procedures for massively scaled sequencing projects , 2014, Genome research.

[15]  N. Neff,et al.  Reconstructing lineage hierarchies of the distal lung epithelium using single cell RNA-seq , 2014, Nature.

[16]  Sacha B. Nelson,et al.  A Quantitative Comparison of Cell-Type-Specific Microarray Gene Expression Profiling Methods in the Mouse Brain , 2011, PloS one.

[17]  S. Robertson,et al.  Expanding the power of recombinase-based labeling to uncover cellular diversity , 2015, Development.

[18]  H. Robinson,et al.  Grouping and Classifying Electrophysiologically-Defined Classes of Neocortical Neurons by Single Cell, Whole-Genome Expression Profiling , 2009, Frontiers in Molecular Neuroscience.

[19]  Kathleen F. Kerr,et al.  The External RNA Controls Consortium: a progress report , 2005, Nature Methods.

[20]  David P. Roberson,et al.  Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity , 2014, eLife.

[21]  C. Margulies,et al.  Designing Cell-Type-Specific Genome-wide Experiments. , 2015, Molecular cell.

[22]  H. Ueda,et al.  Erratum to: Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity , 2017, Genome Biology.

[23]  N. Neff,et al.  Quantitative assessment of single-cell RNA-sequencing methods , 2013, Nature Methods.

[24]  Hassana K. Oyibo,et al.  Sequencing the Connectome , 2012, PLoS biology.

[25]  George M. Church,et al.  Highly Multiplexed Subcellular RNA Sequencing in Situ , 2014, Science.

[26]  A. Oudenaarden,et al.  Validation of noise models for single-cell transcriptomics , 2014, Nature Methods.

[27]  Lior Pachter,et al.  Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis , 2015, Science.

[28]  Andrew C. Adey,et al.  Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.

[29]  D. Tranchina,et al.  Stochastic mRNA Synthesis in Mammalian Cells , 2006, PLoS biology.

[30]  F. Cicchetti,et al.  Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. , 2014, Cell reports.

[31]  A. L. Camp,et al.  Swimming muscles power suction feeding in largemouth bass , 2015, Proceedings of the National Academy of Sciences.

[32]  S. Horvath,et al.  Statistical Applications in Genetics and Molecular Biology , 2011 .

[33]  S. Landis Target regulation of neurotransmitter phenotype , 1990, Trends in Neurosciences.

[34]  Eve Marder,et al.  Computational models in the age of large datasets , 2015, Current Opinion in Neurobiology.

[35]  Conor Liston,et al.  Projections from neocortex mediate top-down control of memory retrieval , 2015, Nature.

[36]  S. Nelson,et al.  The problem of neuronal cell types: a physiological genomics approach , 2006, Trends in Neurosciences.

[37]  Hui Wang,et al.  SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis , 2015, PLoS Comput. Biol..

[38]  Catalin C. Barbacioru,et al.  Tracing the Derivation of Embryonic Stem Cells from the Inner Cell Mass by Single-Cell RNA-Seq Analysis , 2010, Cell stem cell.

[39]  Hans Clevers,et al.  Single-cell messenger RNA sequencing reveals rare intestinal cell types , 2015, Nature.

[40]  Liqun Luo,et al.  Monosynaptic Circuit Tracing with Glycoprotein-Deleted Rabies Viruses , 2015, The Journal of Neuroscience.

[41]  Alex A. Pollen,et al.  Molecular Identity of Human Outer Radial Glia during Cortical Development , 2015, Cell.

[42]  Conor Fitzpatrick,et al.  Nuclear RNA-seq of single neurons reveals molecular signatures of activation , 2016, Nature communications.

[43]  S. Richardson,et al.  Beyond comparisons of means: understanding changes in gene expression at the single-cell level , 2016, Genome Biology.

[44]  S. Linnarsson,et al.  Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing , 2014, Nature Neuroscience.

[45]  Sean C. Bendall,et al.  Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum , 2011, Science.

[46]  R. Schneider,et al.  Epigenetics reloaded: the single-cell revolution. , 2014, Trends in cell biology.

[47]  R. Masland Neuronal cell types , 2004, Current Biology.

[48]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[49]  Gioele La Manno,et al.  Quantitative single-cell RNA-seq with unique molecular identifiers , 2013, Nature Methods.

[50]  P. Arlotta,et al.  Instructing Perisomatic Inhibition by Direct Lineage Reprogramming of Neocortical Projection Neurons , 2015, Neuron.

[51]  R. Sandberg,et al.  Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells , 2012, Nature Biotechnology.

[52]  S. Teichmann,et al.  Computational and analytical challenges in single-cell transcriptomics , 2015, Nature Reviews Genetics.

[53]  T. Perlmann,et al.  Maintaining differentiated cellular identity , 2012, Nature Reviews Genetics.

[54]  R. Axel,et al.  A novel family of genes encoding putative pheromone receptors in mammals , 1995, Cell.

[55]  Yuchio Yanagawa,et al.  Integration of electrophysiological recordings with single-cell RNA-seq data identifies novel neuronal subtypes , 2015, Nature Biotechnology.

[56]  D. Surmeier,et al.  Neuronal vulnerability, pathogenesis, and Parkinson's disease , 2013, Movement disorders : official journal of the Movement Disorder Society.

[57]  George Z. Mentis,et al.  Spinal Inhibitory Interneuron Diversity Delineates Variant Motor Microcircuits , 2016, Cell.

[58]  Peter J. Park,et al.  Somatic mutation in single human neurons tracks developmental and transcriptional history , 2015, Science.

[59]  N. Iscove,et al.  Representative in Vitro cDNA Amplification From Individual Hemopoietic Cells and Colonies , 1990 .

[60]  J. C. Kim,et al.  Multi-Scale Molecular Deconstruction of the Serotonin Neuron System , 2015, Neuron.

[61]  J. Stone,et al.  Naming of neurones. Classification and naming of cat retinal ganglion cells. , 1977, Brain, behavior and evolution.

[62]  Dan Tsafrir,et al.  Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices , 2005, Bioinform..

[63]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[64]  Hongkui Zeng,et al.  Genetic approaches to neural circuits in the mouse. , 2013, Annual review of neuroscience.

[65]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[66]  E. Shapiro,et al.  Single-cell sequencing-based technologies will revolutionize whole-organism science , 2013, Nature Reviews Genetics.

[67]  C. Ponting,et al.  G&T-seq: parallel sequencing of single-cell genomes and transcriptomes , 2015, Nature Methods.

[68]  Nicholas C Spitzer,et al.  Neurotransmitter Switching? No Surprise , 2015, Neuron.

[69]  B. Roska,et al.  Genetic address book for retinal cell types , 2009, Nature Neuroscience.

[70]  S. Quake,et al.  A survey of human brain transcriptome diversity at the single cell level , 2015, Proceedings of the National Academy of Sciences.

[71]  A. Goriely,et al.  Component retention in principal component analysis with application to cDNA microarray data , 2007, Biology Direct.

[72]  Rona S. Gertner,et al.  Single cell RNA Seq reveals dynamic paracrine control of cellular variation , 2014, Nature.

[73]  D. Arendt The evolution of cell types in animals: emerging principles from molecular studies , 2008, Nature Reviews Genetics.

[74]  C. Gerfen,et al.  GENSAT BAC Cre-Recombinase Driver Lines to Study the Functional Organization of Cerebral Cortical and Basal Ganglia Circuits , 2013, Neuron.

[75]  Lief E. Fenno,et al.  The development and application of optogenetics. , 2011, Annual review of neuroscience.

[76]  Pawel Zajac,et al.  Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing , 2012, Nature Protocols.

[77]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[78]  J. C. Kim,et al.  Molecular Neuroanatomy's “Three Gs”: A Primer , 2007, Neuron.

[79]  J. Ferguson SSRI Antidepressant Medications: Adverse Effects and Tolerability. , 2001, Primary care companion to the Journal of clinical psychiatry.

[80]  J. Sanes,et al.  The types of retinal ganglion cells: current status and implications for neuronal classification. , 2015, Annual review of neuroscience.

[81]  Fabian J Theis,et al.  Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells , 2015, Nature Biotechnology.

[82]  J. Eberwine,et al.  Analysis of gene expression in single live neurons. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Gord Fishell,et al.  The Neuron Identity Problem: Form Meets Function , 2013, Neuron.

[84]  Neil J. McKenna,et al.  Combinatorial Control of Gene Expression by Nuclear Receptors and Coregulators , 2002, Cell.

[85]  S. Nelson,et al.  Cell Type-Specific Transcriptomics in the Brain , 2011, The Journal of Neuroscience.

[86]  Lief E. Fenno,et al.  Targeting cells with single vectors using multiple-feature Boolean logic , 2014, Nature Methods.

[87]  T. Asher,et al.  Functional Interplay between Dopaminergic and Serotonergic Neuronal Systems during Development and Adulthood. , 2015, ACS chemical neuroscience.

[88]  Lan Bao,et al.  Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity , 2016, Cell Research.

[89]  Jai-Yoon Sul,et al.  Serotonergic neuron regulation informed by in vivo single‐cell transcriptomics , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[90]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[91]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[92]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[93]  J. D. Macklis,et al.  Molecular logic of neocortical projection neuron specification, development and diversity , 2013, Nature Reviews Neuroscience.

[94]  I. Amit,et al.  Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types , 2014, Science.

[95]  Joseph L. Herman,et al.  Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis , 2015, Nature Methods.

[96]  B. Roth,et al.  Chemogenetic tools to interrogate brain functions. , 2014, Annual review of neuroscience.

[97]  Madeline A. Lancaster,et al.  Human cerebral organoids recapitulate gene expression programs of fetal neocortex development , 2015, Proceedings of the National Academy of Sciences.

[98]  Catalin C. Barbacioru,et al.  mRNA-Seq whole-transcriptome analysis of a single cell , 2009, Nature Methods.

[99]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[100]  Ian R. Wickersham,et al.  Cortical representations of olfactory input by trans-synaptic tracing , 2011, Nature.

[101]  J. Eberwine,et al.  Single-neuron isolation for RNA analysis using pipette capture and laser capture microdissection. , 2015, Cold Spring Harbor protocols.

[102]  Sandy L. Klemm,et al.  Single-Cell Expression Analyses during Cellular Reprogramming Reveal an Early Stochastic and a Late Hierarchic Phase , 2012, Cell.

[103]  Alex A. Pollen,et al.  Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex , 2014, Nature Biotechnology.

[104]  Siddharth S. Dey,et al.  Integrated genome and transcriptome sequencing from the same cell , 2014, Nature Biotechnology.

[105]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[106]  Larry W. Swanson,et al.  The neuron classification problem , 2007, Brain Research Reviews.

[107]  Michael B. Stadler,et al.  Development and diversification of retinal amacrine interneurons at single cell resolution , 2009, Proceedings of the National Academy of Sciences.

[108]  P. Greengard,et al.  Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update , 2014, Front. Neuroanat..

[109]  S. Horvath,et al.  Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing , 2013, Nature.

[110]  Adele M Doyle,et al.  Fixed single-cell transcriptomic characterization of human radial glial diversity , 2015, Nature Methods.

[111]  Jeff Mellen,et al.  High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number , 2011, Analytical chemistry.

[112]  L. Studer,et al.  Moving Stem Cells to the Clinic: Potential and Limitations for Brain Repair , 2015, Neuron.

[113]  Athanasia G. Palasantza,et al.  Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq , 2015, Nature Biotechnology.

[114]  Peter Reinhardt,et al.  Investigating human disease using stem cell models , 2014, Nature Reviews Genetics.

[115]  Michael B. Stadler,et al.  Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling , 2007, The Journal of comparative neurology.

[116]  Onkar S. Dhande,et al.  Cell Type-Specific Manipulation with GFP-Dependent Cre Recombinase , 2015, Nature Neuroscience.

[117]  Chen Xu,et al.  Identification of cell types from single-cell transcriptomes using a novel clustering method , 2015, Bioinform..

[118]  Matt Thomson,et al.  Low Dimensionality in Gene Expression Data Enables the Accurate Extraction of Transcriptional Programs from Shallow Sequencing. , 2016, Cell systems.

[119]  H. Cai,et al.  Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. , 2014, The Journal of clinical investigation.

[120]  J. Troge,et al.  Tumour evolution inferred by single-cell sequencing , 2011, Nature.

[121]  Philippe Soriano,et al.  Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation , 2003, Nature Genetics.

[122]  A. Oudenaarden,et al.  Design and Analysis of Single-Cell Sequencing Experiments , 2015, Cell.

[123]  Rudolf M. Huber,et al.  Combined transcriptome and genome analysis of single micrometastatic cells , 2002, Nature Biotechnology.

[124]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[125]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[126]  Timur Zhiyentayev,et al.  Single-cell in situ RNA profiling by sequential hybridization , 2014, Nature Methods.

[127]  Alexander van Oudenaarden,et al.  Spatially resolved transcriptomics and beyond , 2014, Nature Reviews Genetics.

[128]  S. Linnarsson,et al.  Counting absolute numbers of molecules using unique molecular identifiers , 2011, Nature Methods.

[129]  T. Hashimshony,et al.  CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. , 2012, Cell reports.

[130]  Aaron Diaz,et al.  SCell: integrated analysis of single-cell RNA-seq data , 2016, Bioinform..

[131]  Cole Trapnell,et al.  Defining cell types and states with single-cell genomics , 2015, Genome research.

[132]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[133]  O. Hobert,et al.  Maintenance of postmitotic neuronal cell identity , 2014, Nature Neuroscience.

[134]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[135]  Andrea Califano,et al.  Identification of Neurodegenerative Factors Using Translatome-Regulatory Network Analysis , 2015, Nature Neuroscience.

[136]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[137]  M. Hawrylycz,et al.  Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin , 2014, Molecular Psychiatry.

[138]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[139]  Patrick E. Rothwell,et al.  Single-Cell mRNA Profiling Reveals Cell-Type-Specific Expression of Neurexin Isoforms , 2015, Neuron.

[140]  Aleksandra A. Kolodziejczyk,et al.  The technology and biology of single-cell RNA sequencing. , 2015, Molecular cell.

[141]  J. Grimm,et al.  Molecular basis for catecholaminergic neuron diversity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[142]  J. Rihel,et al.  Single-Cell Transcriptional Analysis of Neuronal Progenitors , 2003, Neuron.

[143]  Carolina Wählby,et al.  In situ sequencing for RNA analysis in preserved tissue and cells , 2013, Nature Methods.

[144]  Staci A. Sorensen,et al.  Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation , 2014, Front. Neural Circuits.

[145]  Shiaoching Gong,et al.  A gene expression atlas of the central nervous system based on bacterial artificial chromosomes , 2003, Nature.

[146]  E. Pierson,et al.  ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis , 2015, Genome Biology.

[147]  J. Roeper Dissecting the diversity of midbrain dopamine neurons , 2013, Trends in Neurosciences.

[148]  Kutay D Atabay,et al.  Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex , 2015, Nature Neuroscience.

[149]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[150]  E. Marcotte,et al.  Insights into the regulation of protein abundance from proteomic and transcriptomic analyses , 2012, Nature Reviews Genetics.