Agarose-based structured optical fibre

[1]  Yu Tzu Wu,et al.  Optical Fiber Specklegram Chemical Sensor Based on a Concatenated Multimode Fiber Structure , 2019, Journal of Lightwave Technology.

[2]  Hugo Thienpont,et al.  Poly(D,L-Lactic Acid) (PDLLA) Biodegradable and Biocompatible Polymer Optical Fiber , 2019, Journal of Lightwave Technology.

[3]  Hiromasa Oku,et al.  Edible fiducial marker made of edible retroreflector , 2018, Comput. Graph..

[4]  Eric Fujiwara,et al.  Polymer optical fiber specklegram strain sensor with extended dynamic range , 2018, Optical Engineering.

[5]  Xing Sheng,et al.  Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine , 2018, Materials.

[6]  Seonghoon Kim,et al.  Light‐Guiding Biomaterials for Biomedical Applications , 2018, Advanced functional materials.

[7]  Aleksandra M Urbanska,et al.  Agarose-based biomaterials for tissue engineering. , 2018, Carbohydrate polymers.

[8]  Stavros Pissadakis,et al.  Bioresorbable optical fiber Bragg gratings. , 2018, Optics letters.

[9]  Y. Montelongo,et al.  Functionalized Flexible Soft Polymer Optical Fibers for Laser Photomedicine , 2018 .

[10]  Xing Sheng,et al.  Implantable and Biodegradable Poly(l‐lactic acid) Fibers for Optical Neural Interfaces , 2018 .

[11]  Nikhil Mehta,et al.  Flexible biodegradable citrate-based polymeric step-index optical fiber. , 2017, Biomaterials.

[12]  Changxi Yang,et al.  Fluorescent hydrogel waveguide for on-site detection of heavy metal ions , 2017, Scientific Reports.

[13]  Y. S. Zhang,et al.  Glucose‐Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid , 2017, Advanced materials.

[14]  Silvio Abrate,et al.  Novel biocompatible and resorbable UV-transparent phosphate glass based optical fiber , 2016 .

[15]  Ali Khademhosseini,et al.  Highly Stretchable, Strain Sensing Hydrogel Optical Fibers , 2016, Advanced materials.

[16]  E. Reynaud,et al.  Using hydrogels in microscopy: A tutorial. , 2016, Micron.

[17]  Marzieh Piryaei,et al.  Preparation of a novel green optical pH sensor based on immobilization of red grape extract on bioorganic agarose membrane , 2016 .

[18]  David L Kaplan,et al.  Biocompatible silk step-index optical waveguides. , 2015, Biomedical optics express.

[19]  Seonghoon Kim,et al.  Step‐Index Optical Fiber Made of Biocompatible Hydrogels , 2015, Advanced materials.

[20]  H. Tao,et al.  Silk: A Different Kind of “Fiber Optics” , 2014 .

[21]  Seok Hyun Yun,et al.  Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo , 2013, Nature Photonics.

[22]  Peter Willett,et al.  What is a tutorial , 2013 .

[23]  François Paquet-Mercier,et al.  Native spider silk as a biological optical fiber , 2013 .

[24]  Hu Tao,et al.  Silk Materials – A Road to Sustainable High Technology , 2012, Advanced materials.

[25]  David Erickson,et al.  Gel-based optical waveguides with live cell encapsulation and integrated microfluidics. , 2012, Optics letters.

[26]  Tanya M. Monro,et al.  Sensing in suspended-core optical fibers , 2011, IEEE Winter Topicals 2011.

[27]  D. Birch,et al.  A fluorescence lifetime-based fibre-optic glucose sensor using glucose/galactose-binding protein. , 2011, The Analyst.

[28]  Hyunmin Yi,et al.  Facile fabrication of gelatin‐based biopolymeric optical waveguides , 2009, Biotechnology and bioengineering.

[29]  M. Scharrer,et al.  Quantitative broadband chemical sensing in air-suspended solid-core fibers , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[30]  Nicolas Godbout,et al.  Prospective for biodegradable microstructured optical fibers. , 2007, Optics letters.

[31]  W. Frith,et al.  Effect of sucrose on agarose gels mechanical behaviour , 2003 .

[32]  F T Yu,et al.  Submicrometer displacement sensing using inner-product multimode fiber speckle fields. , 1993, Applied optics.

[33]  L. Kou,et al.  Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range. , 1993, Applied optics.

[34]  R. Armisén Agar and agarose biotechnological applications , 1991, Hydrobiologia.

[35]  S Daniels,et al.  Ultrasonically induced gas bubble production in agar based gels: Part I. Experimental investigation. , 1987, Ultrasound in medicine & biology.

[36]  A. Hayashi,et al.  Swelling of agarose gel and its related changes , 1987 .

[37]  Laura J. Pyrak-Nolte,et al.  The effect of mixing conditions on the material properties of an agar gel—microstructural and macrostructural considerations , 2006 .