Comparison of strategies improving local energy self-sufficiency at neighborhood Scale. Case study in Yverdon-les-Bains (Switzerland)

Within a context of growing efforts to develop sustainability strategies, one of the main challenges is promoting value creation while using fewer resources. In this perspective, how can we design attractive urban neighborhoods generating endogenous economic activity and fostering socio-cultural dynamics, while moving towards local energy self-sufficiency? Answering that question requires major changes in the way we consider energy in the construction sector, by thinking beyond the scale of a single building and by including a greater number of design parameters. Filling this gap in current research, the Symbiotic Districts project examines dimensions influencing energy self-sufficiency at neighborhood scale by integrating parameters related to buildings, infrastructure, mobility, food, goods and services. The present paper analyzes the results of a case study on an urban sector in the city of Yverdon-les- Bains (Switzerland). Taking lifestyles as a starting point, the project explores three scenarios (technological, behavioral and symbiotic) for the future development of this neighborhood for 2035. The scenarios test different design strategies related to industrial symbioses, production, storage, transportation or urban agriculture. In order to calculate an estimated global balance, an energy flow analysis allows the assessment and comparison of the energy performance of each scenario. In parallel, an urban form adapted to the proposed vision evaluates how architectural and urban design is likely to foster the necessary behavior changes towards the expected energy turnaround.

[1]  Andy van den Dobbelsteen 655: Towards closed cycles - New strategy steps inspired by the Cradle to Cradle approach , 2008 .

[2]  A.A.J.F. Van den Dobbelsteen,et al.  The Amsterdam guide to energetic urban planning , 2011 .

[3]  Emmanuel Rey,et al.  Quartiers symbiotiques : augmenter le potentiel d"autonomie énergétique à l"échelle locale , 2013 .

[4]  A. Mels,et al.  Harvesting urban resources towards more resilient cities , 2012 .

[5]  Sabine Barles,et al.  Comprendre et maîtriser le métabolisme urbain et l'empreinte environnementale des villes , 2008 .

[6]  Suren Erkman,et al.  Vers une écologie industrielle , 1999 .

[7]  H. Althaus,et al.  Benchmarks for sustainable construction: A contribution to develop a standard , 2005 .

[8]  Marie-Paule Thomas En quête d"habitat, choix résidentiels et différenciation des modes de vie familiaux en Suisse , 2013 .

[9]  Mark Gorgolewski,et al.  Carrot City: Creating Places for Urban Agriculture , 2011 .

[10]  Emmanuel Rey,et al.  The influence of centrality on the global energy consumption in Swiss neighborhoods , 2013 .

[11]  Emmanuel Rey,et al.  Quartiers symbiotiques. Stratégies innovantes pour favoriser l’autonomie énergétique à l’échelle du quartier par l’intégration des enjeux relatifs aux bâtiments, aux infrastructures, à la mobilité et à l’alimentation , 2014 .

[12]  Peter Baccini,et al.  Understanding regional metabolism for a sustainable development of urban systems , 1996, Environmental science and pollution research international.

[13]  Andy van den Dobbelsteen,et al.  Towards CO2 Neutral Urban Planning: Presenting the Rotterdam Energy Approach and Planning (REAP) , 2009 .

[14]  R. Sebastian Management and innovation for a sustainable built environment , 2010 .

[15]  C. Kennedy,et al.  Metabolism of Neighborhoods , 2008 .

[16]  Rob Roggema,et al.  Swarming Landscapes: The Art of Designing For Climate Adaptation , 2012 .

[17]  Andy van den Dobbelsteen,et al.  Cities as Organisms , 2012 .

[18]  P. Newman Sustainability and cities: extending the metabolism model , 1999 .

[19]  Bauart Architectes Integration of energy issues into the design process of sustainable neighborhoods , 2011 .