Wireless optical network for a home network

During the European collaborative project OMEGA, two optical-wireless prototypes have been developed. The first prototype operates in the near-infrared spectral region and features Giga Ethernet connectivity, a simple transceiver architecture due to the use of on-off keying, a multi-sector transceiver, and an ultra-fast switch for sector-to-sector hand over. This full-duplex system, composed by one base station and one module, transmits data on three meters. The second prototype is a visible-light-communications system based on DMT signal processing and an adapted MAC sublayer. Data rates around to 100 Mb/s at the physical layer are achieved. This broadcast system, composed also by one base station and one module, transmits data up to two meters. In this paper we present the adapted optical wireless media-access-control sublayer protocol for visible-light communications. This protocol accommodates link adaptation from 128 Mb/s to 1024 Mb/s with multi-sector coverage, and half-duplex or full-duplex transmission.

[1]  Dominic C. O'Brien,et al.  Gigabit class high-speed indoor optical wireless: system design, challenges and results , 2010, Optical Engineering + Applications.

[2]  Dimitris Varoutas,et al.  OMEGA ICT project: Towards convergent Gigabit home networks , 2008, 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications.

[3]  Dominic C. O'Brien,et al.  Multiple input multiple output systems for optical wireless: challenges and possibilities , 2006, SPIE Optics + Photonics.

[4]  Rui Valadas,et al.  Performance of infrared transmission systems under ambient light interference , 1996 .

[5]  Joseph M. Kahn,et al.  Angle diversity for nondirected wireless infrared communication , 1998, ICC '98. 1998 IEEE International Conference on Communications. Conference Record. Affiliated with SUPERCOMM'98 (Cat. No.98CH36220).