Mixed finite elements for global tide models with nonlinear damping
暂无分享,去创建一个
[1] Daniel Y. Le Roux,et al. Spurious inertial oscillations in shallow-water models , 2012, J. Comput. Phys..
[2] Andrew T. T. McRae,et al. Firedrake: automating the finite element method by composing abstractions , 2015, ACM Trans. Math. Softw..
[3] Daniel Y. Le Roux,et al. Dispersion Relation Analysis of the $P^NC_1 - P^_1$ Finite-Element Pair in Shallow-Water Models , 2005, SIAM J. Sci. Comput..
[4] Andrew T. T. McRae,et al. Automating the solution of PDEs on the sphere and other manifolds in FEniCS 1.2 , 2013 .
[5] D. Arnold,et al. Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.
[6] C. Provost,et al. FES99: A Global Tide Finite Element Solution Assimilating Tide Gauge and Altimetric Information , 2002 .
[7] Matthew D. Piggott,et al. Challenges Facing Adaptive Mesh Modeling of the Atmosphere and Ocean , 2010 .
[8] D. Y. Le Roux,et al. Raviart–Thomas and Brezzi–Douglas–Marini finite‐element approximations of the shallow‐water equations , 2008 .
[9] Chris Garrett,et al. Internal Tide Generation in the Deep Ocean , 2007 .
[10] G. R. Stuhne,et al. A higher order discontinuous Galerkin, global shallow water model: Global ocean tides and aquaplanet benchmarks , 2013 .
[11] Michael J. Holst,et al. Geometric Variational Crimes: Hilbert Complexes, Finite Element Exterior Calculus, and Problems on Hypersurfaces , 2010, Foundations of Computational Mathematics.
[12] W. Peltier,et al. High-resolution numerical modeling of tides in the western Atlantic, Gulf of Mexico, and Caribbean Sea during the Holocene , 2011 .
[13] Sergey Danilov,et al. On utility of triangular C-grid type discretization for numerical modeling of large-scale ocean flows , 2010 .
[14] W. Munk,et al. Abyssal recipes II: energetics of tidal and wind mixing , 1998 .
[15] L. D. Marini,et al. Two families of mixed finite elements for second order elliptic problems , 1985 .
[16] Jean-François Remacle,et al. Practical evaluation of five partly discontinuous finite element pairs for the non‐conservative shallow water equations , 2009 .
[17] Robert C. Kirby,et al. Symplectic-mixed finite element approximation of linear acoustic wave equations , 2015, Numerische Mathematik.
[18] Andrew T. T. McRae,et al. Energy‐ and enstrophy‐conserving schemes for the shallow‐water equations, based on mimetic finite elements , 2013, 1305.4477.
[19] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[20] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[21] Mary F. Wheeler,et al. A Priori Error Estimates for Mixed Finite Element Approximations of the Acoustic Wave Equation , 2002, SIAM J. Numer. Anal..
[22] Colin J. Cotter,et al. Mixed finite elements for numerical weather prediction , 2011, J. Comput. Phys..
[23] Colin J. Cotter,et al. A finite element exterior calculus framework for the rotating shallow-water equations , 2012, J. Comput. Phys..
[24] T. Geveci. On the application of mixed finite element methods to the wave equations , 1988 .
[25] Daniel Y. Le Roux,et al. Analysis of Numerically Induced Oscillations in 2D Finite-Element Shallow-Water Models Part I: Inertia-Gravity Waves , 2007, SIAM J. Sci. Comput..
[26] Roy A. Walters,et al. Coastal ocean models : two useful finite element methods , 2005 .
[27] Gary D. Egbert,et al. Accuracy assessment of global barotropic ocean tide models , 2014 .
[28] Irena Lasiecka,et al. Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping , 1993, Differential and Integral Equations.
[29] S. Griffis. EDITOR , 1997, Journal of Navigation.
[30] T. Dupont,et al. A Priori Estimates for Mixed Finite Element Methods for the Wave Equation , 1990 .
[31] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[32] Irena Lasiecka,et al. Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping–source interaction , 2007 .
[33] Colin J. Cotter,et al. Mixed finite elements for global tide models , 2014, Numerische Mathematik.
[34] R. F. Henry,et al. A finite element model for tides and resonance along the north coast of British Columbia , 1993 .
[35] Daniel Y. Le Roux,et al. Analysis of Numerically Induced Oscillations in Two-Dimensional Finite-Element Shallow-Water Models Part II: Free Planetary Waves , 2008, SIAM J. Sci. Comput..
[36] Colin J. Cotter,et al. Numerical wave propagation for the triangular P1DG-P2 finite element pair , 2010, J. Comput. Phys..
[37] M. Kawahara,et al. Periodic Galerkin finite element method of tidal flow , 1978 .
[38] L. St. Laurent,et al. Parameterizing tidal dissipation over rough topography , 2001 .