Path Integration for Light Transport in Volumes

Simulating the transport of light in volumes such as clouds or objects with subsurface scattering is computationally expensive. We describe an approximation to such transport using path integration. Unlike the more commonly used diffusion approximation, the path integration approach does not explicitly rely on the assumption that the material within the volume is dense. Instead, it assumes the phase function of the volume material is strongly forward scattering and uniform throughout the medium, an assumption that is often the case in nature. We show that this approach is useful for simulating subsurface scattering and scattering in clouds.

[1]  Holly Rushmeier,et al.  Rendering Participating Media: Problems and Solutions from Application Areas , 1995 .

[2]  Jerry Tessendorf Comparison between data and small-angle approximations for the in-water solar radiance distribution , 1988 .

[3]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[4]  Duc Quang Nguyen,et al.  Physically based modeling and animation of fire , 2002, ACM Trans. Graph..

[5]  Masud Chaichian,et al.  Path Integrals in Physics: Volume I Stochastic Processes and Quantum Mechanics , 2001 .

[6]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[7]  G. I. Bell,et al.  Nuclear Reactor Theory , 1952 .

[8]  Jerry Tessendorf Measures of temporal pulse stretching , 1992, Optics & Photonics.

[9]  Jerry Tessendorf Time-dependent radiative transfer and pulse evolution , 1989 .

[10]  C. Bohren Multiple scattering of light and some of its observable consequences , 1987 .

[11]  Steven L. Jacques,et al.  Path integral description of light transport in tissues , 1997, Photonics West - Biomedical Optics.

[12]  Andrea J. van Doorn,et al.  Shading in the case of translucent objects , 2001, IS&T/SPIE Electronic Imaging.

[13]  Akira Ishimaru,et al.  Wave Propagation in Random Media (Scintillation) , 1993 .

[14]  Simon Premoze,et al.  Analytic light transport approximations for volumetric materials , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[15]  Wang,et al.  Time-dependent photon migration using path integrals. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  E. Gross Path integral approach to multiple scattering , 1983 .

[17]  Hans-Peter Seidel,et al.  Interactive rendering of translucent objects , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[18]  Feld,et al.  Photon migration in turbid media using path integrals. , 1994, Physical review letters.

[19]  Tom Lokovic,et al.  Deep shadow maps , 2000, SIGGRAPH.

[20]  R. Aronson,et al.  Radiative transfer implies a modified reciprocity relation. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  C. Demetrescu,et al.  Physical interpretation of virtual rays , 1997 .

[22]  R R Alfano,et al.  Fermat photons in turbid media: an exact analytic solution for most favorable paths-a step toward optical tomography. , 1995, Optics letters.

[23]  Julie Dorsey,et al.  Rendering of Wet Materials , 1999, Rendering Techniques.

[24]  Tessendorf Radiative transfer as a sum over paths. , 1987, Physical review. A, General physics.

[25]  Henrik Wann Jensen,et al.  A rapid hierarchical rendering technique for translucent materials , 2005, SIGGRAPH Courses.

[26]  Eric P. Lafortune,et al.  Mathematical Models and Monte Carlo Algorithms for Physically Based Rendering , 1995 .

[27]  Pat Hanrahan,et al.  Monte Carlo evaluation of non-linear scattering equations for subsurface reflection , 2000, SIGGRAPH.

[28]  Alexander Keller,et al.  Metropolis Light Transport for Participating Media , 2000, Rendering Techniques.

[29]  Ruikang K. Wang,et al.  A path-integral model of light scattered by turbid media , 2001 .

[30]  James R. Arvo,et al.  Transfer Equations in Global Illumination , 1993 .

[31]  Per H. Christensen,et al.  Efficient simulation of light transport in scenes with participating media using photon maps , 1998, SIGGRAPH.

[32]  Shree K. Nayar,et al.  Shedding light on the weather , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[33]  Alan Edelman,et al.  Modeling and rendering of weathered stone , 1999, SIGGRAPH.

[34]  Steven David Miller Stochastic construction of a Feynman path integral representation for Green’s functions in radiative transfer , 1998 .

[35]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[36]  R. Giovanelli III Diffusion Through Non-Uniform Media , 1963 .

[37]  Craig F. Bohren,et al.  Clouds in a glass of beer : simple experiments in atmospheric physics / Craig F. Bohren , 1987 .

[38]  Akira Ishimaru,et al.  Wave propagation and scattering in random media. Volume I - Single scattering and transport theory , 1978 .

[39]  Jos Stam,et al.  Multiple Scattering as a Diffusion Process , 1995, Rendering Techniques.

[40]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[41]  François X. Sillion,et al.  Global Illumination Techniques for the Simulation of Participating Media , 1997, Rendering Techniques.

[42]  R R Alfano,et al.  Average and most-probable photon paths in random media. , 1997, Optics letters.

[43]  Jerry Tessendorf,et al.  Impact of multiple scattering on simulated infrared cloud scene images , 1994, Defense, Security, and Sensing.

[44]  Uriel Frisch,et al.  WAVE PROPAGATION IN RANDOM MEDIA. , 1970 .

[45]  E. Tirapegui,et al.  Functional Integration and Semiclassical Expansions , 1982 .

[46]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[47]  Jerry Tessendorf Underwater solar light field: analytical model from a WKB evaluation , 1991, Optics & Photonics.