Imaging with thermal noise induced currents
暂无分享,去创建一个
[1] Albert Y. Zomaya,et al. Partial Differential Equations , 2007, Explorations in Numerical Analysis.
[2] Wesley C. Sanders. Conductive Atomic Force Microscopy , 2019, Atomic Force Microscopy.
[3] U. Feige,et al. Spectral graph theory , 2019, Zeta and 𝐿-functions in Number Theory and Combinatorics.
[4] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[5] Simon R. Arridge,et al. Gradient-Based Quantitative Image Reconstruction in Ultrasound-Modulated Optical Tomography: First Harmonic Measurement Type in a Linearised Diffusion Formulation , 2014, IEEE Transactions on Medical Imaging.
[6] E. M. Lifshitz,et al. Course in Theoretical Physics , 2013 .
[7] G. Bal,et al. Hybrid inverse problems for a system of Maxwell’s equations , 2013, 1308.5439.
[8] G. Bal,et al. Linearized internal functionals for anisotropic conductivities , 2013, 1302.3354.
[9] O. Scherzer,et al. The Levenberg-Marquardt Iteration for Numerical Inversion of the Power Density Operator , 2012, 1211.6034.
[10] G. Bal. Hybrid inverse problems and redundant systems of partial differential equations , 2012, 1210.0265.
[11] G. Bal,et al. Inverse Anisotropic Conductivity from Power Densities in Dimension n ≥ 3 , 2012, 1208.6029.
[12] G. Bal. Cauchy problem for Ultrasound Modulated EIT , 2012, 1201.0972.
[13] Habib Ammari,et al. Microwave Imaging by Elastic Deformation , 2011, SIAM J. Appl. Math..
[14] Guillaume Bal,et al. Reconstruction of Coefficients in Scalar Second‐Order Elliptic Equations from Knowledge of Their Solutions , 2011, 1111.5051.
[15] Guillaume Bal,et al. Hybrid inverse problems and internal functionals , 2011, 1110.4733.
[16] G. Bal,et al. Inverse anisotropic diffusion from power density measurements in two dimensions , 2011, 1110.4606.
[17] G. Bal,et al. Inverse diffusion from knowledge of power densities , 2011, 1110.4577.
[18] Peter Kuchment,et al. Stabilizing inverse problems by internal data , 2011, 1110.1819.
[19] G. Bal,et al. Inverse diffusion problems with redundant internal information , 2011, 1106.4277.
[20] Peter Kuchment,et al. 2D and 3D reconstructions in acousto-electric tomography , 2010, 1011.3059.
[21] G. Bal,et al. Inverse scattering and acousto-optic imaging. , 2009, Physical review letters.
[22] Jérôme Fehrenbach,et al. Imaging by Modification: Numerical Reconstruction of Local Conductivities from Corresponding Power Density Measurements , 2009, SIAM J. Imaging Sci..
[23] Peter Kuchment,et al. Synthetic focusing in ultrasound modulated tomography , 2009, 0901.2552.
[24] Otmar Scherzer,et al. Impedance-Acoustic Tomography , 2008, SIAM J. Appl. Math..
[25] Eric Bonnetier,et al. Electrical Impedance Tomography by Elastic Deformation , 2008, SIAM J. Appl. Math..
[26] Habib Ammari,et al. An Introduction to Mathematics of Emerging Biomedical Imaging , 2008 .
[27] David Isaacson,et al. Electrical Impedance Tomography , 1999, SIAM Rev..
[28] T. R. Anthony,et al. Heat treating and melting material with a scanning laser or electron beam , 1977 .
[29] Louis Nirenberg,et al. Interior estimates for elliptic systems of partial differential equations , 1955 .
[30] H. Nyquist. Thermal Agitation of Electric Charge in Conductors , 1928 .
[31] J. Johnson. Thermal Agitation of Electricity in Conductors , 1927, Nature.
[32] B. Bhatia,et al. HEATED ATOMIC FORCE MICROSCOPE CANTILEVERS AND THEIR APPLICATIONS , 2013 .
[33] M. Bellac,et al. Nonequilibrium statistical mechanics , 2007, Physics Subject Headings (PhySH).
[34] S. M. Rytov,et al. Principles of statistical radiophysics , 1987 .
[35] R. Kubo. The fluctuation-dissipation theorem , 1966 .