SVR active learning for product quality control

In this work, the active learning approach is adopted to address the problem of training sample collection for the estimation of chemical parameters for product quality control from spectroscopic data. In particular, two strategies for support vector regression (SVR) are proposed. The first method select samples distant in the kernel space from the current support vectors, while the second one uses a pool of regressors in order to choose the samples with the greater disagreements between the different regressors. The experimental results on two real data sets show the effectiveness of the proposed solutions.