A size-consistent approach to strongly correlated systems using a generalized antisymmetrized product of nonorthogonal geminals

Abstract Inspired by the wavefunction forms of exactly solvable algebraic Hamiltonians, we present several wavefunction ansatze. These wavefunction forms are exact for two-electron systems; they are size consistent; they include the (generalized) antisymmetrized geminal power, the antisymmetrized product of strongly orthogonal geminals, and a Slater determinant wavefunctions as special cases. The number of parameters in these wavefunctions grows only linearly with the size of the system. The parameters in the wavefunctions can be determined by projecting the Schrodinger equation against a test-set of Slater determinants; the resulting set of nonlinear equations is reminiscent of coupled-cluster theory, and can be solved with no greater than O (N5) scaling if all electrons are assumed to be paired, and with O (N6) scaling otherwise. Based on the analogy to coupled-cluster theory, methods for computing spectroscopic properties, molecular forces, and response properties are proposed.

[1]  Paul W. Ayers,et al.  Computing the Fukui function from ab initio quantum chemistry: approaches based on the extended Koopmans’ theorem , 2007 .

[2]  J. Cizek,et al.  Geminal Localization in the Separated-Pair π-Electronic Model of Benzene , 1971 .

[3]  Debashis Mukherjee,et al.  Reflections on size-extensivity, size-consistency and generalized extensivity in many-body theory , 2005 .

[4]  J. Links,et al.  Integrability of an extended d+id-wave pairing Hamiltonian , 2012, 1206.2684.

[5]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[6]  Vitaly A. Rassolov,et al.  A geminal model chemistry , 2002 .

[7]  K E Schmidt,et al.  Pfaffian pairing wave functions in electronic-structure quantum Monte Carlo simulations. , 2006, Physical review letters.

[8]  Feng Xu,et al.  Geminal model chemistry II. Perturbative corrections. , 2004, The Journal of chemical physics.

[9]  William A. Goddard,et al.  The Description of Chemical Bonding From AB Initio Calculations , 1978 .

[10]  R. Parr,et al.  Theory of Electronic Excitation and Reorganization in the Formaldehyde Molecule , 1960 .

[11]  B. A. Hess,et al.  The structure of the second-order reduced density matrix in density matrix functional theory and its construction from formal criteria. , 2004, The Journal of chemical physics.

[12]  Klaus Ruedenberg,et al.  Electron Correlation and Separated‐Pair Approximation. An Application to Berylliumlike Atomic Systems , 1968 .

[13]  R. Mcweeny,et al.  A quantum-mechanical study of the water molecule , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  M. R. Oudih,et al.  Projection techniques as methods of particle-number symmetry restoration , 2007 .

[15]  T. Crawford,et al.  An Introduction to Coupled Cluster Theory for Computational Chemists , 2007 .

[16]  P. Cassam-Chenaï,et al.  Frequently asked questions on the mean field configuration interaction method. I-distinguishable degrees of freedom , 2012, Journal of Mathematical Chemistry.

[17]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[18]  R. Mcweeny,et al.  The density matrix in may-electron quantum mechanics III. Generalized product functions for beryllium and four-electron ions , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  Takashi Tsuchimochi,et al.  Projected Hartree-Fock theory. , 2012, The Journal of chemical physics.

[20]  A. J. Coleman Structure of Fermion Density Matrices. II. Antisymmetrized Geminal Powers , 1965 .

[21]  Masao Ishikawa,et al.  A Pfaffian-Hafnian Analogue of Borchardt's Identity , 2005, Electron. J. Comb..

[22]  Pairing correlations and particle-number projection methods , 2002, nucl-th/0207080.

[23]  J. F. Harrison,et al.  Geminal Product Wavefunctions: A General Formalism , 1971 .

[24]  Martin Head-Gordon,et al.  Quantum chemistry and molecular processes , 1996 .

[25]  Werner Kutzelnigg,et al.  Direct Determination of Natural Orbitals and Natural Expansion Coefficients of Many‐Electron Wavefunctions. I. Natural Orbitals in the Geminal Product Approximation , 1964 .

[26]  Gustavo E Scuseria,et al.  Exploring Copper Oxide Cores Using the Projected Hartree-Fock Method. , 2012, Journal of chemical theory and computation.

[27]  Péter R. Surján,et al.  THE INTERACTION OF CHEMICAL BONDS. III: PERTURBED STRICTLY LOCALIZED GEMINALS IN LMO BASIS , 1994 .

[28]  D. G. Hopper,et al.  An improved MCSCF method , 2009 .

[29]  Péter R. Surján,et al.  The interaction of chemical bonds. IV. Interbond charge transfer by a coupled‐cluster‐type formalism , 1995 .

[30]  D. Silver Electron Pair Correlation: Products of N(N − 1) / 2 Geminals for N Electrons , 1971 .

[31]  X. López,et al.  A natural orbital functional for multiconfigurational states. , 2011, The Journal of chemical physics.

[32]  W. Nazarewicz,et al.  Particle-Number-Projected HFB Method , 2004 .

[33]  Rodney J. Bartlett,et al.  Coupled‐cluster theory and its equation‐of‐motion extensions , 2012 .

[34]  Enrico Clementi,et al.  Complete multi-configuration self-consistent field theory , 1967 .

[35]  M. Hall,et al.  GENERALIZED MOLECULAR ORBITAL THEORY II , 1997 .

[36]  X. López,et al.  The nature of chemical bonds from PNOF5 calculations. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[37]  M. Bajdich,et al.  Pfaffian pairing and backflow wavefunctions for electronic structure quantum Monte Carlo methods , 2008 .

[38]  Darwin W. Smith,et al.  Extension of Koopmans’ theorem. I. Derivation , 1975 .

[39]  M. V. Stoitsov,et al.  Variation after particle-number projection for the Hartree-Fock-Bogoliubov method with the Skyrme energy density functional , 2007 .

[40]  Garnet Kin-Lic Chan,et al.  Optimizing large parameter sets in variational quantum Monte Carlo , 2011, 1108.0900.

[41]  H. Shull,et al.  ELECTRON PAIRS IN THE BERYLLIUM ATOM1 , 1962 .

[42]  D. Silver Natural Orbital Expansion of Interacting Geminals , 1969 .

[43]  J. Cullen,et al.  Generalized valence bond solutions from a constrained coupled cluster method , 1996 .

[44]  A particle-number-conserving solution to the generalized pairing problem , 1997, nucl-th/9709036.

[45]  L. Kier,et al.  A molecular orbital valence bond study of 3-methyl sydnone and 3-methyl pseudosydnone , 1990 .

[46]  K. Ruedenberg,et al.  Electron Correlation and Separated Pair Approximation in Diatomic Molecules. II. Lithium Hydride and Boron Hydride , 1970 .

[47]  G. Ortiz,et al.  Integrable two-channel px+ipy-wave model of a superfluid , 2011 .

[48]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[49]  R. Bartlett The coupled-cluster revolution , 2010 .

[50]  G. Náray‐Szabó All‐pair wave function and reduced variational equation for electronic systems , 1975 .

[51]  Josef Paldus,et al.  A Critical Assessment of Coupled Cluster Method in Quantum Chemistry , 2007 .

[52]  Enrico Clementi,et al.  Study of the Electronic Structure of Molecules. I. Molecular Wavefunctions and Their Analysis , 1967 .

[53]  W. Kutzelnigg Separation of strong (bond-breaking) from weak (dynamical) correlation , 2012 .

[54]  M. Gaudin Diagonalisation d'une classe d'hamiltoniens de spin , 1976 .

[55]  D. B. Cook,et al.  Doubly-occupied orbital MCSCF methods , 1975 .

[56]  D. Lacroix,et al.  Projected quasiparticle perturbation theory , 2012, 1205.5379.

[57]  M. Gaudin Un systeme a une dimension de fermions en interaction , 1967 .

[58]  Laimutis Bytautas,et al.  Seniority and orbital symmetry as tools for establishing a full configuration interaction hierarchy. , 2011, The Journal of chemical physics.

[59]  David W. Small,et al.  Post-modern valence bond theory for strongly correlated electron spins. , 2011, Physical chemistry chemical physics : PCCP.

[60]  Mihály Kállay,et al.  Nonconventional partitioning of the many-body Hamiltonian for studying correlation effects , 1998 .

[61]  C. Kollmar The "JK-only" approximation in density matrix functional and wave function theory. , 2004, The Journal of chemical physics.

[62]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[63]  P. Durand,et al.  Transposition of the Theories Describing Superconducting Systems to Molecular Systems. Method of Biorbitals , 1965 .

[64]  W. Goddard,et al.  Generalized valence bond wavefunctions for the low lying states of methylene , 1972 .

[65]  K. Ruedenberg,et al.  Electron Correlation and Electron‐Pair Wavefunction for the Beryllium Atom , 1965 .

[66]  R. Parr,et al.  Generalized Antisymmetrized Product Wave Functions for Atoms and Molecules , 1956 .

[67]  Edina Rosta,et al.  Two-body zeroth order hamiltonians in multireference perturbation theory: The APSG reference state , 2002 .

[68]  Péter R. Surján,et al.  AN INTRODUCTION TO THE THEORY OF GEMINALS , 1999 .

[69]  I. Røeggen,et al.  Extended Geminal Models , 1999 .

[70]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[71]  P. Surján,et al.  Strongly orthogonal geminals: size-extensive and variational reference states , 2012, Journal of Mathematical Chemistry.

[72]  G. Scuseria,et al.  Symmetry-projected variational approach for ground and excited states of the two-dimensional Hubbard model , 2012, 1204.2006.

[73]  Exact ionization potentials from wavefunction asymptotics: the extended Koopmans' theorem, revisited. , 2009, The Journal of chemical physics.

[74]  G. Náray‐Szabó All-pair wavefunction for many-electron states with the highest multiplicity , 1973 .

[75]  V. Rassolov,et al.  Geminal model chemistry III: Partial spin restriction. , 2007, The Journal of chemical physics.

[76]  Christian Kollmar,et al.  A new approach to density matrix functional theory , 2003 .

[77]  Ramon Carbo,et al.  A general multiconfiguration paired excitation self-consistent field theory (MC PE SCF) , 1977 .

[78]  G. Scuseria,et al.  The optimization of molecular orbitals for coupled cluster wavefunctions , 1987 .

[79]  J. Cizek,et al.  Diagrammatical Method for Geminals. II. Applications , 1972 .

[80]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .

[81]  Robert G. Parr,et al.  Theory of Separated Electron Pairs , 1958 .

[82]  J. Paldus Diagrammatical Method for Geminals. I. Theory , 1972 .

[83]  John A. Parkhill,et al.  A truncation hierarchy of coupled cluster models of strongly correlated systems based on perfect-pairing references: the singles+doubles models. , 2010, The Journal of chemical physics.

[84]  V. Rassolov,et al.  The Electronic Mean-Field Configuration Interaction method: III- the p-orthogonality constraint , 2010 .

[85]  R. Mcweeny,et al.  Self‐Consistent Group Calculations on Polyatomic Molecules. I. Basic Theory with an Application to Methane , 1965 .

[86]  R. Mcweeny,et al.  The density matrix in many-electron quantum mechanics I. Generalized product functions. Factorization and physical interpretation of the density matrices , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[87]  K. Ruedenberg,et al.  Electron Correlation and Separated Pair Approximation in Diatomic Molecules. III. Imidogen , 1970 .

[88]  rgen Aa. Jensen,et al.  Polarization propagator calculations with an AGP reference state , 1984 .

[89]  D. Silver Bilinear Orbital Expansion of Geminal‐Product Correlated Wavefunctions , 1970 .

[90]  Tadashi Arai,et al.  Theorem on Separability of Electron Pairs , 1960 .

[91]  William A. Goddard,et al.  Self‐Consistent Procedures for Generalized Valence Bond Wavefunctions. Applications H3, BH, H2O, C2H6, and O2 , 1972 .

[92]  P. Cassam-Chenaï The electronic mean-field configuration interaction method. I. Theory and integral formulas. , 2006, The Journal of chemical physics.

[93]  R. Richardson A restricted class of exact eigenstates of the pairing-force Hamiltonian , 1963 .

[94]  S. Pittel,et al.  Colloquium: Exactly solvable Richardson-Gaudin models for many-body quantum systems , 2004, nucl-th/0405011.

[95]  Per-Olov Löwdin,et al.  Note on the Separability Theorem for Electron Pairs , 1961 .

[96]  N. Sherman,et al.  Exact eigenstates of the pairing-force Hamiltonian , 1964 .

[97]  C. W. Borchardt Bestimmung der symmetrischen Verbindungen vermittelst ihrer erzeugenden Function. , 1857 .

[98]  W. Kutzelnigg On the validity of the electron pair approximation for the Beryllium ground state , 1965 .

[99]  Thomas M Henderson,et al.  Projected quasiparticle theory for molecular electronic structure. , 2011, The Journal of chemical physics.

[100]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[101]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[102]  Darwin W. Smith,et al.  Natural Orbitals and Geminals of the Beryllium Atom , 1965 .

[103]  Werner Kutzelnigg,et al.  Direct Calculation of Approximate Natural Orbitals and Natural Expansion Coefficients of Atomic and Molecular Electronic Wavefunctions. II. Decoupling of the Pair Equations and Calculation of the Pair Correlation Energies for the Be and LiH Ground States , 1968 .

[104]  Jack Levine,et al.  An Identity of Cayley , 1960 .

[105]  A. J. Coleman THE AGP MODEL FOR FERMION SYSTEMS , 1997 .

[106]  W. Goddard,et al.  RULE-BASED TRIAL WAVE FUNCTIONS FOR GENERALIZED VALENCE BOND THEORY , 1994 .

[107]  Frank Weinhold,et al.  Reduced Density Matrices of Atoms and Molecules. I. The 2 Matrix of Double‐Occupancy, Configuration‐Interaction Wavefunctions for Singlet States , 1967 .

[108]  R. C. Morrison,et al.  Extension of Koopmans’ theorem. II. Accurate ionization energies from correlated wavefunctions for closed‐shell atoms , 1975 .

[109]  P. Surján,et al.  Generalized Møller-Plesset Partitioning in Multiconfiguration Perturbation Theory. , 2010, Journal of chemical theory and computation.

[110]  M. Ernzerhof Validity of the Extended Koopmans' Theorem. , 2009, Journal of chemical theory and computation.

[111]  C. Yang Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction , 1967 .

[112]  David M. Silver,et al.  Electron Correlation and Separated Pair Approximation in Diatomic Molecules. I. Theory , 1970 .

[113]  L. Cooper,et al.  Theory of superconductivity , 1957 .

[114]  W. Goddard,et al.  Generalized valence bond description of bonding in low-lying states of molecules , 1973 .

[115]  G. Sierra,et al.  Exact solution of the p + ip pairing Hamiltonian and a hierarchy of integrable models , 2010, 1001.1591.

[116]  J. Blatt Electron Pairs in the Theory of Superconductivity , 1960 .

[117]  John Edward Lennard-Jones,et al.  The molecular orbital theory of chemical valency XVI. A theory of paired-electrons in polyatomic molecules , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[118]  Darrell D. Ebbing,et al.  Separated‐Electron‐Pair Model: Application to the π‐Electronic Structure of the Ground State of Benzene , 1966 .

[119]  P. Ring,et al.  Symmetry-projected Hartree–Fock–Bogoliubov equations , 1999, nucl-th/9907065.

[120]  Martin Head-Gordon,et al.  The imperfect pairing approximation , 2000 .

[121]  R. Parr,et al.  Long‐range behavior of natural orbitals and electron density , 1975 .