The Effect of Mercury and PCBs on Organisms from Lower Trophic Levels of a Georgia Salt Marsh

[1]  N. Finley,et al.  Polychlorinated Biphenyl- and Mercury-Associated Alterations on Benthic Invertebrate Community Structure in a Contaminated Salt Marsh in Southeast Georgia , 1999, Archives of environmental contamination and toxicology.

[2]  S. Y. Newell,et al.  Response of saltmarsh fungi to the presence of mercury and polychlorinated biphenyls at a Superfund site , 1998 .

[3]  Richard F. Lee,et al.  Aroclor 1268 and toxaphene in fish from a southeastern U.S. estuary , 1998 .

[4]  A. Holland,et al.  Interpretation of Microtox® solid‐phase toxicity tests: The effects of sediment composition , 1997 .

[5]  S. Tanabe,et al.  Distribution and Characterization of Polychlorinated Biphenyl Congeners in Soil and Sediments from a Superfund Site Contaminated with Aroclor 1268 , 1997 .

[6]  Graeme M. Smith,et al.  Predator-prey relationships in mummichogs (Fundulus heteroclitus (L.)): Effects of living in a polluted environment , 1997 .

[7]  K. Walters,et al.  Experimental studies of predation on metazoans inhabiting Spartina alterniflora stems , 1996 .

[8]  D. J. Klemm,et al.  Environmental monitoring and assessment program (EMAP) laboratory methods manual estuaries. Volume 1. Biological and physical analyses , 1995 .

[9]  J. Hamelink,et al.  Bioavailability: Physical, Chemical, and Biological Interactions , 1994 .

[10]  Mary Ann Moran,et al.  Dissolved humic substances of vascular plant origin in a coastal marine environment , 1994 .

[11]  J. Morris,et al.  Whole-plant gas exchange responses of Spartina alterniflora (Poaceae) to a range of constant and transient salinities , 1994 .

[12]  M Horvat,et al.  An improved speciation method for mercury by GC/CVAFS after aqueous phase ethylation and room temperature precollection. , 1994, Talanta.

[13]  S. Klaine,et al.  Evaluation of peroxidase as a biochemical indicator of toxic chemical exposure in the aquatic plant Hydrilla Verticillata, Royle , 1994 .

[14]  R. Purkayastha,et al.  Uptake and toxicological effects of some heavy metals on Pleurotus sajor-caju (Fr.) singer. , 1994, Ecotoxicology and Environmental Safety.

[15]  W. Catallo Ecotoxicology and wetland ecosystems: Current understanding and future needs , 1993 .

[16]  Ralph G. Smith Determination of mercury in environmental samples by isotope dilution/ICPMS , 1993 .

[17]  P. Winger,et al.  Toxicity of sediments and pore water from Brunswick Estuary, Georgia , 1993 .

[18]  N. Valette-Silver The use of sediment cores to reconstruct historical trends in contamination of estuarine and coastal sediments , 1993 .

[19]  Nicolas S. Bloom,et al.  Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples , 1993 .

[20]  S. Pezeshki,et al.  Effect of crude oil on gas exchange functions of Juncus roemerianus and Spartina alterniflora , 1993 .

[21]  M. Posey,et al.  Complex Predator‐Prey Interactions within an Estuarine Benthic Community , 1991 .

[22]  R. Delaune,et al.  A comparative study of above‐ground productivity of dominant U.S. Gulf Coast marsh species , 1991 .

[23]  B. Drake Photosynthesis of salt marsh species , 1989 .

[24]  J. Klopatek Some thoughts on using a landscape framework to address cumulative impacts on wetland food chain support , 1988 .

[25]  Brian L. Howes,et al.  Factors controlling the growth form of Spartina alterniflora: feedbacks between above-ground production, sediment oxidation, nitrogen and salinity , 1986 .

[26]  R. Howarth,et al.  Multiple Stable Isotopes Used to Trace the Flow of Organic Matter in Estuarine Food Webs , 1985, Science.

[27]  S. Y. Newell,et al.  The growth of bacteria and the fungus Phaeosphaeriatypharum (Desm.) Holm (Eumycota : Ascomycotina) in salt-marsh microcosms in the presence and absence of mercury☆ , 1984 .

[28]  E. Mrozek,et al.  Effects of polychlorinated biphenyls on growth of Spartina alterniflora Loisel , 1983 .

[29]  D. Capone,et al.  Effects of Metals on Methanogenesis, Sulfate Reduction, Carbon Dioxide Evolution, and Microbial Biomass in Anoxic Salt Marsh Sediments , 1983, Applied and environmental microbiology.

[30]  O. Griffith,et al.  Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. , 1980, Analytical biochemistry.

[31]  D. Grosch,et al.  A comparative study of the effects of mercuric chloride and methyl mercury chloride on reproductive performance in the brine shrimp, Artemia salina , 1978 .

[32]  B. L. Welsh The Role of Grass Shrimp, Palaemonetes pugio, in a Tidal Marsh Ecosystem , 1975 .

[33]  Candace A. Oviatt,et al.  Ecology of a New England salt marsh , 1973 .

[34]  S. Y. Newell,et al.  Microbial Secondary Production from Salt Marsh-Grass Shoots, and Its Known and Potential Fates , 2002 .

[35]  M. Weinstein,et al.  Concepts and Controversies in Tidal Marsh Ecology , 2000, Springer Netherlands.

[36]  R. Kneib The role of tidal marshes in the ecology of estuarine nekton , 1997 .

[37]  R. Turner Carbon, nitrogen, and phosphorus leaching rates from Spartina alterniflora salt marshes , 1993 .

[38]  J. Weis,et al.  Differences in the effects of mercury on Telson regeneration in two populations of the grass shrimpPalaemonetes pugio , 1988, Archives of environmental contamination and toxicology.

[39]  J. Cairns,et al.  Toxicant effects on reproduction and disruption of the egg-length relationship in grass shrimp , 1980, Bulletin of Environmental Contamination and Toxicology.