Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems

Abstract This paper presents a review of proper orthogonal decomposition (POD) methods for order reduction in a variety of research areas. The historical development and basic mathematical formulation of the POD method are introduced. POD for parametric dynamic systems is introduced, and a physical interpretation of the POD approach based on the proper orthogonal modes (POMs) is presented. The equivalence between POD and three other order reduction methods is discussed: the first alternative method is singular value decomposition (SVD), the second is principal component analysis (PCA), and the third is Karhunen-Loeve decomposition (KLD). A classification of POD methods is described based on the parameter adaptation and sampling. Actual applications of POD methods for order reduction in engineering systems are illustrated. Finally, outlooks on the use of POD methods in high-dimensional nonlinear dynamic systems are presented in more detail to provide direct guidance for researchers in various areas of engineering.

[1]  Danny C. Sorensen,et al.  The Sylvester equation and approximate balanced reduction , 2002 .

[2]  Hans-Christian Hege,et al.  Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction , 2011, Journal of Fluid Mechanics.

[3]  Asmund Huser,et al.  Proper orthogonal decomposition applied to turbulent flow in a square duct , 1994 .

[4]  A. Sarkar,et al.  Mid-frequency structural dynamics with parameter uncertainty , 2001 .

[5]  Mandar Tabib,et al.  Analysis of dominant flow structures and their flow dynamics in chemical process equipment using snapshot proper orthogonal decomposition technique , 2008 .

[6]  J. Borée,et al.  Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows , 2003 .

[7]  Karen Willcox,et al.  An Accelerated Greedy Missing Point Estimation Procedure , 2016, SIAM J. Sci. Comput..

[8]  Emil M. Constantinescu,et al.  Probabilistic Density Function Method for Stochastic ODEs of Power Systems with Uncertain Power Input , 2015, SIAM/ASA J. Uncertain. Quantification.

[9]  Charbel Farhat,et al.  A method for interpolating on manifolds structural dynamics reduced‐order models , 2009 .

[10]  Chun Jie Wang,et al.  A Monte Carlo simulation based inverse propagation method for stochastic model updating , 2015 .

[11]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[12]  Xiaodong Jia,et al.  A novel strategy for signal denoising using reweighted SVD and its applications to weak fault feature enhancement of rotating machinery , 2017 .

[13]  Mi Wang,et al.  Proper Orthogonal Decomposition as a technique for identifying two-phase flow pattern based on electrical impedance tomography , 2017 .

[14]  Charbel Farhat,et al.  Reduced-order fluid/structure modeling of a complete aircraft configuration , 2006 .

[15]  Roger Ghanem,et al.  Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration , 1998 .

[16]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[17]  Jeffrey P. Thomas,et al.  Proper Orthogonal Decomposition Technique for Transonic Unsteady Aerodynamic Flows , 2000 .

[18]  Andrew J. Majda,et al.  Systematic Strategies for Stochastic Mode Reduction in Climate , 2003 .

[19]  Arthur Veldman,et al.  A numerical method for the calculation of laminar, incompressible boundary layers with strong viscous - inviscid interaction , 1979 .

[20]  M. P. Païdoussis,et al.  Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method , 2003 .

[21]  Brian F. Feeny,et al.  Part 2: Proper Orthogonal Modal Modeling of a Frictionally Excited Beam , 2000 .

[22]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[23]  B. Feeny,et al.  On the physical interpretation of proper orthogonal modes in vibrations , 1998 .

[24]  H. Park,et al.  An efficient method of solving the Navier–Stokes equations for flow control , 1998 .

[25]  Daniele Dessi,et al.  Load field reconstruction with a combined POD and integral spline approximation technique , 2014 .

[26]  Kuan Lu,et al.  Application of the transient proper orthogonal decomposition method for order reduction of rotor systems with faults , 2016 .

[27]  D. Chambers,et al.  Karhunen-Loeve expansion of Burgers' model of turbulence , 1988 .

[28]  M. Kirby,et al.  A proper orthogonal decomposition of a simulated supersonic shear layer , 1990 .

[29]  M. Grepl Reduced-basis approximation a posteriori error estimation for parabolic partial differential equations , 2005 .

[30]  Katarzyna Bizon,et al.  Optimal model reduction by empirical spectral methods via sampling of chaotic orbits , 2012 .

[31]  Vijayan K. Asari,et al.  An improved face recognition technique based on modular PCA approach , 2004, Pattern Recognit. Lett..

[32]  Zlatko Drmac,et al.  A New Selection Operator for the Discrete Empirical Interpolation Method - Improved A Priori Error Bound and Extensions , 2015, SIAM J. Sci. Comput..

[33]  Earl H. Dowell,et al.  Projection-free proper orthogonal decomposition method for a cantilever plate in supersonic flow , 2014 .

[34]  Peter Benner,et al.  Interpolatory Projection Methods for Parameterized Model Reduction , 2011, SIAM J. Sci. Comput..

[35]  Brian F. Feeny,et al.  APPLICATION OF PROPER ORTHOGONAL DECOMPOSITION TO STRUCTURAL VIBRATION ANALYSIS , 2003 .

[36]  Benjamin Peherstorfer,et al.  Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..

[37]  B. Ravindra,et al.  COMMENTS ON “ON THE PHYSICAL INTERPRETATION OF PROPER ORTHOGONAL MODES IN VIBRATIONS” , 1999 .

[38]  Earl H. Dowell,et al.  Mach Number Influence on Reduced-Order Models of Inviscid Potential Flows in Turbomachinery , 2002 .

[39]  Bo Jiang,et al.  A new nonlinear parameterized model order reduction technique combining the interpolation method and Proper Orthogonal Decomposition , 2011, 2011 9th IEEE International Conference on ASIC.

[40]  M. Glauser,et al.  Application of POD on time-resolved schlieren in supersonic multi-stream rectangular jets , 2017 .

[41]  Arthur Veldman,et al.  A new, quasi-simultaneous method to calculate interacting boundary layers , 1980 .

[42]  Lei Xie,et al.  HJB-POD-Based Feedback Design for the Optimal Control of Evolution Problems , 2004, SIAM J. Appl. Dyn. Syst..

[43]  Joseph P. Cusumano,et al.  Experimental measurements of dimensionality and spatial coherence in the dynamics of a flexible-beam impact oscillator , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[44]  Enrico Sciubba,et al.  An Improved POD Technique for the Optimization of MSF Processes , 2012 .

[45]  Wu Zhong Lin,et al.  Proper Orthogonal Decomposition in the Generation of Reduced Order Models for Interconnects , 2008, IEEE Transactions on Advanced Packaging.

[46]  Ionel M. Navon,et al.  Efficiency of a POD-based reduced second-order adjoint model in 4 D-Var data assimilation , 2006 .

[47]  Shaopu Yang,et al.  Recent advances in dynamics and control of hysteretic nonlinear systems , 2009 .

[48]  H. Tran,et al.  Proper Orthogonal Decomposition for Flow Calculations and Optimal Control in a Horizontal CVD Reactor , 2002 .

[49]  Jeffrey M. Brown Reduced Order Modeling Methods for Turbomachinery Design , 2008 .

[50]  Gaëtan Kerschen,et al.  Identification of a continuous structure with a geometrical non-linearity. Part II: Proper orthogonal decomposition , 2003 .

[51]  A. Vakakis,et al.  PROPER ORTHOGONAL DECOMPOSITION (POD) OF A CLASS OF VIBROIMPACT OSCILLATIONS , 2001 .

[52]  D. Lengani,et al.  Identification and quantification of losses in a LPT cascade by POD applied to LES data , 2018 .

[53]  Ira B. Schwartz,et al.  Invariant Manifolds, Nonclassical Normal Modes, and Proper Orthogonal Modes in the Dynamics of the Flexible Spherical Pendulum , 2001 .

[54]  G. Kerschen,et al.  The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview , 2005 .

[55]  Kuan Lu,et al.  Comparative study of two order reduction methods for high-dimensional rotor systems , 2017, International Journal of Non-Linear Mechanics.

[56]  Proper orthogonal decomposition of solar photospheric motions. , 2005, Physical review letters.

[57]  Marco Amabili,et al.  Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper orthogonal decomposition method , 2006 .

[58]  D. Catherall,et al.  The integration of the two-dimensional laminar boundary-layer equations past the point of vanishing skin friction , 1966, Journal of Fluid Mechanics.

[59]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[60]  Daniel J. Inman,et al.  Sensor Validation for Smart Structures , 1999 .

[61]  H. P. Lee,et al.  PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY , 2002 .

[62]  R. Murray,et al.  Model reduction for compressible flows using POD and Galerkin projection , 2004 .

[63]  Stephane Clenet,et al.  Model order reduction applied to the numerical study of electrical motor based on POD method taking into account rotation movement , 2014 .

[64]  Minqiang Xu,et al.  A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection , 2017 .

[65]  Adrian Sandu,et al.  Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations , 2014, International Journal for Numerical Methods in Fluids.

[66]  J. Lumley EARLY WORK ON FLUID MECHANICS IN THE IC ENGINE , 2001 .

[67]  Junlin Hu Discriminative transfer learning with sparsity regularization for single-sample face recognition , 2017, Image Vis. Comput..

[68]  Zhendong Luo,et al.  Reduced-Order Modeling of the Upper Tropical Pacific Ocean Model using Proper Orthogonal Decomposition , 2006, Comput. Math. Appl..

[69]  R. Ruotolo,et al.  USING SVD TO DETECT DAMAGE IN STRUCTURES WITH DIFFERENT OPERATIONAL CONDITIONS , 1999 .

[70]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[71]  David G. MacManus,et al.  Complex Aeroengine Intake Ducts and Dynamic Distortion , 2017 .

[72]  Ali H. Nayfeh,et al.  Experimental Validation of Reduction Methods for Nonlinear Vibrations of Distributed-Parameter Systems: Analysis of a Buckled Beam , 1998 .

[73]  S. Rahman,et al.  Decomposition methods for structural reliability analysis , 2005 .

[74]  Bogdan I. Epureanu,et al.  A parametric analysis of reduced order models of viscous flows in turbomachinery , 2003 .

[75]  Piotr Breitkopf,et al.  Model reduction for multidisciplinary optimization - application to a 2D wing , 2008 .

[76]  W. Habashi,et al.  Multi-parameter analysis of aero-icing problems via proper orthogonal decomposition and multidimensional interpolation , 2013 .

[77]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[78]  Jonathon Shlens,et al.  A Tutorial on Principal Component Analysis , 2014, ArXiv.

[79]  L. Sirovich,et al.  Low-dimensional description of free-shear-flow coherent structures and their dynamical behaviour , 1994, Journal of Fluid Mechanics.

[80]  Minghui Huang,et al.  A Novel Spatiotemporal LS-SVM Method for Complex Distributed Parameter Systems With Applications to Curing Thermal Process , 2016, IEEE Transactions on Industrial Informatics.

[81]  Efficient computation of bifurcation diagrams via adaptive ROMs , 2014 .

[82]  K. Willcox,et al.  Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition , 2004 .

[83]  Dominique Pelletier,et al.  Reduced-order models for parameter dependent geometries based on shape sensitivity analysis , 2010, J. Comput. Phys..

[84]  Kuan Lu Statistical moment analysis of multi-degree of freedom dynamic system based on polynomial dimensional decomposition method , 2018 .

[85]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[86]  Stefan Volkwein,et al.  Proper orthogonal decomposition for optimality systems , 2008 .

[87]  Ugo Galvanetto,et al.  Numerical investigation of a new damage detection method based on proper orthogonal decomposition , 2007 .

[88]  N. Bogolyubov,et al.  Asymptotic Methods in the Theory of Nonlinear Oscillations , 1961 .

[89]  Minh N. Do,et al.  Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models , 2002, IEEE Trans. Multim..

[90]  Dan Zhao,et al.  Experimental study of Rijke-type thermoacoustic instability by using Proper Orthogonal Decomposition method , 2017 .

[91]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[92]  Jong-Myon Kim,et al.  Singular value decomposition based feature extraction approaches for classifying faults of induction motors , 2013 .

[93]  S. Eftekhar Azam,et al.  Online damage detection via a synergy of proper orthogonal decomposition and recursive Bayesian filters , 2017 .

[94]  Daniel C. Haworth,et al.  Application of the proper orthogonal decomposition to datasets of internal combustion engine flows , 2004 .

[95]  Michael J. Brennan,et al.  On the transmissibilities of nonlinear vibration isolation system , 2016 .

[96]  Yushu Chen,et al.  Study for ball bearing outer race characteristic defect frequency based on nonlinear dynamics analysis , 2017 .

[97]  D. MacManus,et al.  Flow Distortion Measurements in Convoluted Aeroengine Intakes , 2016 .

[98]  José M. Vega,et al.  Reduced order models based on local POD plus Galerkin projection , 2010, J. Comput. Phys..

[99]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[100]  Mark R. Opmeer,et al.  Model Order Reduction by Balanced Proper Orthogonal Decomposition and by Rational Interpolation , 2012, IEEE Transactions on Automatic Control.

[101]  Earl H. Dowell,et al.  Reduced-order models of unsteady viscous flows in turbomachinery using viscous-inviscid coupling , 2001 .

[102]  A. T. Patera,et al.  Reduced-basis techniques for rapid reliable optimization of systems described by affinely parametrized coercive elliptic partial differential equations , 2007 .

[103]  L. Sirovich Chaotic dynamics of coherent structures , 1989 .

[104]  Parviz Moin,et al.  Characteristic-eddy decomposition of turbulence in a channel , 1989, Journal of Fluid Mechanics.

[105]  A. Townsend The Structure of Turbulent Shear Flow , 1975 .

[106]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[107]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[108]  Ionel M. Navon,et al.  A reduced‐order approach to four‐dimensional variational data assimilation using proper orthogonal decomposition , 2007 .

[109]  Chunguo Wu,et al.  A note on equivalence of proper orthogonal decomposition methods , 2003 .

[110]  K. Kunisch,et al.  Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .

[111]  I. Jolliffe Principal Component Analysis , 2002 .

[112]  Simao Marques,et al.  Nonlinear Aerodynamic and Aeroelastic Model Reduction using a Discrete Empirical Interpolation Method , 2017 .

[113]  José M. Vega,et al.  Construction of Bifurcation Diagrams Using POD on the Fly , 2014, SIAM J. Appl. Dyn. Syst..

[114]  Thuan Lieu Adaptation of reduced order models for applications in aeroelasticity , 2004 .

[115]  M. Hafez,et al.  Artificial Compressibility Methods for Numerical Solutions of Transonic Full Potential Equation , 1979 .

[116]  S. Rahman,et al.  Adaptive-sparse polynomial dimensional decomposition methods for high-dimensional stochastic computing☆ , 2014, 1402.3330.

[117]  A. Antoulas,et al.  A Survey of Model Reduction by Balanced Truncation and Some New Results , 2004 .

[118]  Xingmin Ren,et al.  Dynamic response analysis of an overhung rotor with interval uncertainties , 2017 .

[119]  P. Guillaume,et al.  A robust singular value decomposition for damage detection under changing operating conditions and structural uncertainties , 2005 .

[120]  Stan Lipovetsky,et al.  PCA and SVD with nonnegative loadings , 2009, Pattern Recognit..

[121]  Eusebio Valero,et al.  Local POD Plus Galerkin Projection in the Unsteady Lid-Driven Cavity Problem , 2011, SIAM J. Sci. Comput..

[122]  Mark N. Glauser,et al.  Towards practical flow sensing and control via POD and LSE based low-dimensional tools , 2004 .

[123]  L. Graftieaux,et al.  Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows , 2001 .

[124]  G. I. Schuëller,et al.  Buckling analysis of cylindrical shells with random geometric imperfections , 2003 .

[125]  D. D. Kosambi Statistics in Function Space , 2016 .

[126]  Shengping Gong,et al.  Coupled Control of Reflectivity Modulated Solar Sail for GeoSail Formation Flying , 2015 .

[127]  Ahsan Kareem,et al.  Proper Orthogonal Decomposition-Based Modeling, Analysis, and Simulation of Dynamic Wind Load Effects on Structures , 2005 .

[128]  Charbel Farhat,et al.  Stabilization of projection‐based reduced‐order models , 2012 .

[129]  Fulei Chu,et al.  Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography , 2004 .

[130]  Torsten Fransson,et al.  Panel Discussion on Standard Configurations for Unsteady Flow Through Vibrating Axial-Flow Turbomachine-Cascades , 1991 .

[131]  Roi Gurka,et al.  POD of vorticity fields: A method for spatial characterization of coherent structures , 2006 .

[132]  W. Langford,et al.  The subharmonic bifurcation solution of nonlinear Mathieu's equation and Euler dynamic buckling problems , 1988 .

[133]  N. Wiener The Homogeneous Chaos , 1938 .

[134]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[135]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[136]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[137]  Daniel Rixen,et al.  Reduction methods for MEMS nonlinear dynamic analysis , 2011 .

[138]  Timo Tonn,et al.  Comparison of the reduced-basis and POD a posteriori error estimators for an elliptic linear-quadratic optimal control problem , 2011 .

[139]  Ratneshwar Jha,et al.  Proper orthogonal decomposition based algorithm for detecting damage location and severity in composite beams , 2011 .

[140]  William H. Green,et al.  Using adaptive proper orthogonal decomposition to solve the reaction--diffusion equation , 2007 .

[141]  Yaguo Lei,et al.  A review on empirical mode decomposition in fault diagnosis of rotating machinery , 2013 .

[142]  Yushu Chen,et al.  Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamical system with fractional exponential , 2014 .

[143]  V. Ralph Algazi,et al.  On the optimality of the Karhunen-Loève expansion (Corresp.) , 1969, IEEE Trans. Inf. Theory.

[144]  Brian F. Feeny,et al.  On Proper Orthogonal Co-Ordinates as Indicators of Modal Activity , 2002 .

[145]  Earl H. Dowell,et al.  REDUCED-ORDER MODELS OF UNSTEADY TRANSONIC VISCOUS FLOWS IN TURBOMACHINERY , 2000 .

[146]  R. Nicolaides,et al.  A SELF-CONTAINED, AUTOMATED METHODOLOGY FOR OPTIMAL FLOW CONTROL VALIDATED FOR TRANSITION DELAY , 1995 .

[147]  Yongfeng Yang,et al.  Rationalize the irrational and fractional expressions in nonlinear analysis , 2016 .

[148]  Earl H. Dowell,et al.  Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation , 2013, Journal of Fluid Mechanics.

[149]  Earl H. Dowell,et al.  System Identii Cation and Proper Orthogonal Decomposition Method Applied to Unsteady Aerodynamics , 2022 .

[150]  Mathieu Legrand,et al.  Flow temporal reconstruction from non-time-resolved data part I: mathematic fundamentals , 2011 .

[151]  Victor M. Calo,et al.  Fast multiscale reservoir simulations using POD-DEIM model reduction , 2015, ANSS 2015.

[152]  Brenden P. Epps,et al.  An error threshold criterion for singular value decomposition modes extracted from PIV data , 2010 .

[153]  Michel Lesoinne,et al.  Parameter Adaptation of Reduced Order Models for Three-Dimensional Flutter Analysis , 2004 .

[154]  Ira B. Schwartz,et al.  Dynamics of Large Scale Coupled Structural/ Mechanical Systems: A Singular Perturbation/ Proper Orthogonal Decomposition Approach , 1999, SIAM J. Appl. Math..

[155]  Robert J. Martinuzzi,et al.  Generalized phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake , 2012, Journal of Fluid Mechanics.

[156]  P. Sagaut,et al.  Towards an adaptive POD/SVD surrogate model for aeronautic design , 2011 .

[157]  Minqi Li,et al.  A metamodel-based Monte Carlo simulation approach for responsive production planning of manufacturing systems , 2016 .

[158]  Charbel Farhat,et al.  Adaptation of Aeroelastic Reduced-Order Models and Application to an F-16 Configuration , 2007 .

[159]  Ionel M. Navon,et al.  An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model , 2007 .

[160]  Alok Sinha Reduced-Order Model of a Bladed Rotor With Geometric Mistuning , 2009 .

[161]  Gaëtan Kerschen,et al.  Sensor validation using principal component analysis , 2005 .

[162]  Christophe Geuzaine,et al.  Nonlinear Interpolation on Manifold of Reduced-Order Models in Magnetodynamic Problems , 2016, IEEE Transactions on Magnetics.

[163]  Jan G. Korvink,et al.  Efficient optimization of transient dynamic problems in MEMS devices using model order reduction , 2005 .

[164]  Chen Min,et al.  The Application of Stochastic Resonance Theory for Early Detecting Rub-Impact Fault of Rotor System , 2003 .

[165]  Earl H. Dowell,et al.  Proper orthogonal decomposition method for analysis of nonlinear panel flutter with thermal effects in supersonic flow , 2015 .

[166]  J. Sinou,et al.  Non-linear vibrations of a beam with non-ideal boundary conditions and uncertainties – Modeling, numerical simulations and experiments , 2018, Mechanical Systems and Signal Processing.

[167]  D. B. Segala,et al.  On the Inclusion of Time Derivatives of State Variables for Parametric Model Order Reduction for a Beam on a Nonlinear Foundation , 2017 .

[168]  Thomas Henneron,et al.  Model Order Reduction of Non-Linear Magnetostatic Problems Based on POD and DEI Methods , 2014, IEEE Transactions on Magnetics.

[169]  J. Cole,et al.  Calculation of plane steady transonic flows , 1970 .

[170]  Mees,et al.  Singular-value decomposition and embedding dimension. , 1987, Physical review. A, General physics.

[171]  H. Tran,et al.  Modeling and control of physical processes using proper orthogonal decomposition , 2001 .

[172]  K. Willcox Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition , 2004 .

[173]  Gene H. Golub,et al.  Numerical methods for computing angles between linear subspaces , 1971, Milestones in Matrix Computation.

[174]  Nishant Kumar,et al.  Use of Random Excitation to Develop Pod Based Reduced Order Models for Nonlinear Structural Dynamics , 2007 .

[175]  R. Thom Les singularites des applications differentiables , 1956 .

[176]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[177]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[178]  Christopher Jarvis,et al.  Sensitivity based Proper Orthogonal Decomposition for nonlinear parameter dependent systems , 2014, 2014 American Control Conference.

[179]  Jean-Jacques Sinou,et al.  Study of the non-linear dynamic response of a rotor system with faults and uncertainties , 2012 .

[180]  L. Biegler,et al.  Simulation and Optimization of Pressure Swing Adsorption Systems Using Reduced-Order Modeling , 2009 .

[181]  Meng Guang,et al.  Electro-Rheological Multi-layer Squeeze Film Damper and Its Application to Vibration Control of Rotor System , 2000 .

[182]  David Amsallem,et al.  Fast local reduced basis updates for the efficient reduction of nonlinear systems with hyper-reduction , 2015, Advances in Computational Mathematics.

[183]  Gal Berkooz,et al.  Observations on the Proper Orthogonal Decomposition , 1992 .

[184]  Stefan Volkwein,et al.  POD a-posteriori error estimates for linear-quadratic optimal control problems , 2009, Comput. Optim. Appl..

[185]  Li-Qun Chen,et al.  Galerkin methods for natural frequencies of high-speed axially moving beams , 2010 .

[186]  Gianluigi Rozza,et al.  Reduced Order Methods for Modeling and Computational Reduction , 2013 .

[187]  K. Tatum Finite Element Methods for Transonic Flow Analysis , 1982 .

[188]  Gaëtan Kerschen,et al.  On the exploitation of chaos to build reduced-order models , 2003 .

[189]  Brian F. Feeny,et al.  Part 1: Dynamical Characterization of a Frictionally Excited Beam , 2000 .

[190]  J. Moreau,et al.  Flow analysis of an annular jet by particle image velocimetry and proper orthogonal decomposition , 2001 .

[191]  Hussaini M. Yousuff,et al.  A Self-Contained, Automated Methodology for Optimal Flow Control , 1997 .

[192]  Ali H. Nayfeh,et al.  A reduced-order model for electrically actuated microbeam-based MEMS , 2003 .

[193]  Sun-Yuan Kung,et al.  Principal Component Neural Networks: Theory and Applications , 1996 .

[194]  Hu Ding,et al.  Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load , 2012 .

[195]  Kuan Lu,et al.  A modified nonlinear POD method for order reduction based on transient time series , 2015 .

[196]  Frank M. Selten,et al.  Baroclinic empirical orthogonal functions as basis functions in an atmospheric model , 1997 .

[197]  Radhakant Padhi,et al.  Proper orthogonal decomposition based optimal neurocontrol synthesis of a chemical reactor process using approximate dynamic programming , 2003, Neural Networks.

[198]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[199]  Aleksandar Jemcov,et al.  OpenFOAM: A C++ Library for Complex Physics Simulations , 2007 .

[200]  D. Sorensen,et al.  Approximation of large-scale dynamical systems: an overview , 2004 .

[201]  Paolo Mantegazza,et al.  Assessing the local stability of periodic motions for large multibody non-linear systems using proper orthogonal decomposition , 2004 .

[202]  Wuyin Jin,et al.  Simulating the formation of spiral wave in the neuronal system , 2013 .

[203]  Yushu Chen,et al.  Bifurcation analysis of an arch structure with parametric and forced excitation , 2007 .

[204]  Gang Chen,et al.  Study on Hankel matrix-based SVD and its application in rolling element bearing fault diagnosis , 2015 .

[205]  Lawrence Sirovich,et al.  Dynamical eigenfunction decomposition of turbulent channel flow , 1991 .

[206]  S. Discetti,et al.  Three-dimensional organization of the flow structure in a non-reactive model aero engine lean burn injection system , 2014 .

[207]  Vimal Singh,et al.  Perturbation methods , 1991 .

[208]  Jun Ma,et al.  Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits , 2012 .

[209]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[210]  Sondipon Adhikari,et al.  Polynomial chaos expansion with random and fuzzy variables , 2016 .

[211]  Chao Fu,et al.  An interval precise integration method for transient unbalance response analysis of rotor system with uncertainty , 2018, Mechanical Systems and Signal Processing.

[212]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[213]  Giovanni Solari,et al.  Double Proper Orthogonal Decomposition for Representing and Simulating Turbulence Fields , 2005 .

[214]  A. Nayfeh,et al.  Reduction Methods for Nonlinear Vibrations of Spatially Continuous Systems with Initial Curvature , 2000 .

[215]  Jacob K. White,et al.  A stabilized discrete empirical interpolation method for model reduction of electrical, thermal, and microelectromechanical systems , 2011, 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC).

[216]  Benjamin Peherstorfer,et al.  Localized Discrete Empirical Interpolation Method , 2014, SIAM J. Sci. Comput..

[217]  D. Sorensen,et al.  A Survey of Model Reduction Methods for Large-Scale Systems , 2000 .

[218]  Guanrong Chen,et al.  Synchronous Bursts on Scale-Free Neuronal Networks with Attractive and Repulsive Coupling , 2010, PloS one.

[219]  Christophe Pierre,et al.  A sparse preconditioned iterative method for vibration analysis of geometrically mistuned bladed disks , 2009 .

[220]  R. Vaccaro SVD and Signal Processing II: Algorithms, Analysis and Applications , 1991 .

[221]  Qingjie Cao,et al.  Stability analysis of reduced rotor pedestal looseness fault model , 2015 .

[222]  Peter Benner,et al.  Model Order Reduction for Linear and Nonlinear Systems: A System-Theoretic Perspective , 2014, Archives of Computational Methods in Engineering.

[223]  Robert J. Martinuzzi,et al.  Sensor-based estimation of the velocity in the wake of a low-aspect-ratio pyramid , 2015 .

[224]  A. Chatterjee An introduction to the proper orthogonal decomposition , 2000 .

[225]  Yushu Chen,et al.  Influencing factors of the dynamic hysteresis in varying compliance vibrations of a ball bearing , 2015 .

[226]  S. Ravindran A reduced-order approach for optimal control of fluids using proper orthogonal decomposition , 2000 .

[227]  José M. Vega,et al.  On the use of POD-based ROMs to analyze bifurcations in some dissipative systems , 2012 .

[228]  R. Vidhya,et al.  Effect of wavelet based image fusion techniques with principal component analysis (PCA) and singular value decomposition (SVD) in supervised classification , 2017 .

[229]  Kurt Hornik,et al.  A Robust Subspace Algorithm for Principal Component Analysis , 2003, Int. J. Neural Syst..

[230]  J. Jansen,et al.  Reduced-order optimal control of water flooding using proper orthogonal decomposition , 2006 .

[231]  Sharif Rahman Statistical Moments of Polynomial Dimensional Decomposition , 2010 .

[232]  J. Cusumano,et al.  Period-infinity periodic motions, chaos, and spatial coherence in a 10 degree of freedom impact oscillator , 1993 .

[233]  Siep Weiland,et al.  Missing Point Estimation in Models Described by Proper Orthogonal Decomposition , 2004, IEEE Transactions on Automatic Control.

[234]  Haihua Yu,et al.  Bifurcation analysis for nonlinear multi-degree-of-freedom rotor system with liquid-film lubricated bearings , 2013 .

[235]  S. Lipovetsky,et al.  Multivariate least squares and its relation to other multivariate techniques , 2002 .

[236]  Xuezhi Zhao,et al.  Singular value decomposition packet and its application to extraction of weak fault feature , 2016 .

[237]  Brian F. Feeny,et al.  An "optimal" modal reduction of a system with frictional excitation , 1999 .

[238]  Reza Golafshan,et al.  SVD and Hankel matrix based de-noising approach for ball bearing fault detection and its assessment using artificial faults , 2016 .

[239]  Earl H. Dowell,et al.  Eigenmode Analysis in Unsteady Aerodynamics: Reduced Order Models , 1997 .

[240]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[241]  Earl H. Dowell,et al.  Three-Dimensional Transonic Aeroelasticity Using Proper Orthogonal Decomposition-Based Reduced-Order Models , 2001 .

[242]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[243]  Min Xu,et al.  A comparison of numerical and semi-analytical proper orthogonal decomposition methods for a fluttering plate , 2014, Nonlinear Dynamics.

[244]  Earl H. Dowell,et al.  Proper Orthogonal Decomposition Reduced-Order Model for Nonlinear Aeroelastic Oscillations , 2014 .

[245]  Kuan Lu,et al.  Statistical moment analysis of nonlinear rotor system with multi uncertain variables , 2019, Mechanical Systems and Signal Processing.

[246]  S. Rahman A polynomial dimensional decomposition for stochastic computing , 2008 .

[247]  Hongrui Cao,et al.  Vibration signal correction of unbalanced rotor due to angular speed fluctuation , 2018, Mechanical Systems and Signal Processing.

[248]  Laurent Cordier,et al.  Control of the cylinder wake in the laminar regime by Trust-Region methods and POD Reduced Order Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[249]  Haym Benaroya,et al.  Finite Element Methods in Probabilistic Structural Analysis: A Selective Review , 1988 .

[250]  Yushu Chen,et al.  Bifurcations and hysteresis of varying compliance vibrations in the primary parametric resonance for a ball bearing , 2015 .

[251]  Adrian Sandu,et al.  Multivariate predictions of local reduced‐order‐model errors and dimensions , 2017, ArXiv.

[252]  Hongguang Li,et al.  Adaptive vibration control of micro-cantilever beam with piezoelectric actuator in MEMS , 2006 .

[253]  ALI H. NAYFEH,et al.  Reduced-Order Models for MEMS Applications , 2005 .

[254]  Thomas A. Brenner,et al.  Using proper orthogonal decomposition to model off-reference flow conditions , 2013 .

[255]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[256]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[257]  K. Mohammad,et al.  ACTIVE CONTROL OF FLEXIBLE STRUCTURES USING PRINCIPAL COMPONENT ANALYSIS IN THE TIME DOMAIN , 2002 .

[258]  Lei Hou,et al.  Bifurcation analysis of reduced rotor model based on nonlinear transient POD method , 2017 .

[259]  Roohollah Noori,et al.  Development and application of reduced‐order neural network model based on proper orthogonal decomposition for BOD5 monitoring: Active and online prediction , 2013 .

[260]  Yongfeng Yang,et al.  Nonlinear analysis of a rub-impact rotor with random stiffness under random excitation , 2016 .

[261]  David Galbally,et al.  Non‐linear model reduction for uncertainty quantification in large‐scale inverse problems , 2009 .

[262]  Ionel Michael Navon,et al.  Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model , 2007 .

[263]  Oliver Lass,et al.  Adaptive POD basis computation for parametrized nonlinear systems using optimal snapshot location , 2014, Comput. Optim. Appl..

[265]  Lei Hou,et al.  Application of the polynomial dimensional decomposition method in a class of random dynamical systems , 2017 .

[266]  Sebastian Schops,et al.  Reduction of Linear Subdomains for Non-Linear Electro-Quasistatic Field Simulations , 2013, IEEE Transactions on Magnetics.

[267]  Masanobu Shinozuka,et al.  Neumann Expansion for Stochastic Finite Element Analysis , 1988 .

[268]  Equivalent-Circuit Generation From Finite-Element Solution Using Proper Orthogonal Decomposition , 2016, IEEE Transactions on Magnetics.

[269]  John A Bullinaria,et al.  Extracting semantic representations from word co-occurrence statistics: stop-lists, stemming, and SVD , 2012, Behavior Research Methods.

[270]  M. Stöhr,et al.  Effects of Flow Structure Dynamics on Thermoacoustic Instabilities in Swirl-Stabilized Combustion , 2012 .

[271]  Marco Amabili,et al.  Reduced-order models for nonlinear vibrations of fluid-filled circular cylindrical shells: Comparison of POD and asymptotic nonlinear normal modes methods , 2007 .

[272]  Ali H. Nayfeh,et al.  Reduced-Order Models of Weakly Nonlinear Spatially Continuous Systems , 1998 .

[273]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[274]  S. Rahman,et al.  A generalized dimension‐reduction method for multidimensional integration in stochastic mechanics , 2004 .

[275]  Alok Sinha,et al.  Reduced Order Modeling of a Bladed Rotor With Geometric Mistuning Via Estimated Deviations in Mass and Stiffness Matrices , 2013 .

[276]  Lei Hou,et al.  Application of the HB–AFT method to the primary resonance analysis of a dual-rotor system , 2017 .

[277]  Z. Duan,et al.  Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[278]  Sharif Rahman,et al.  ORTHOGONAL POLYNOMIAL EXPANSIONS FOR SOLVING RANDOM EIGENVALUE PROBLEMS , 2011 .

[279]  Stefan Volkwein Optimal Control of a Phase‐Field Model Using Proper Orthogonal Decomposition , 2001 .

[280]  V. Yadav Novel Computational Methods for Solving High- Dimensional Random Eigenvalue Problems , 2013 .

[281]  Alok Sinha,et al.  Forced Response Statistics of a Bladed Rotor with Geometric Mistuning , 2014 .

[282]  Hajime Igarashi,et al.  Adaptive Subdomain Model Order Reduction With Discrete Empirical Interpolation Method for Nonlinear Magneto-Quasi-Static Problems , 2016, IEEE Transactions on Magnetics.

[283]  Harold Hotelling,et al.  Simplified calculation of principal components , 1936 .

[284]  Mordechay Karpel Design for Active Flutter Suppression and Gust Alleviation Using State-Space Aeroelastic Modeling , 1982 .