Enhanced Upper Tropical Tropospheric COS: Impact on the Stratospheric Aerosol Layer

Carbonyl sulfide (COS) is considered to be a major source of the stratospheric sulfate aerosol during periods of volcanic quiescence. We measured COS at the tropical tropopause and find mixing ratios to be 20 to 50% larger than are assumed in models. The enhanced COS levels are correlated with high concentrations of biomass-burning pollutants like carbon monoxide (CO) and hydrogen cyanide (HCN). The analysis of backward trajectories and global maps of fire statistics suggest that biomass-burning emissions transported upward by deep convection are the source of the enhanced COS in the upper tropical troposphere.

[1]  D. Weisenstein,et al.  A two‐dimensional model of sulfur species and aerosols , 1997 .

[2]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[3]  L. Thomason,et al.  A comparison of the stratospheric aerosol background periods , 1997 .

[4]  H. Singh,et al.  Composition, chemistry, and climate of the atmosphere , 1995 .

[5]  P. Crutzen,et al.  Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles , 1990, Science.

[6]  D. Davis,et al.  The Pacific Exploratory Mission‐West Phase B: February‐March, 1994 , 1997 .

[7]  Paul J. Crutzen,et al.  The possible importance of CSO for the sulfate layer of the stratosphere , 1976 .

[8]  E. Kjellström A Three-Dimensional Global Model Study of Carbonyl Sulfide in the Troposphere and the Lower Stratosphere , 1997 .

[9]  M. Andreae,et al.  The Southern Tropical Atlantic Region Experiment (STARE): Transport and Atmospheric Chemistry near the Equator‐Atlantic (TRACE A) and Southern African Fire‐Atmosphere Research Initiative (SAFARI): An introduction , 1996 .

[10]  A. Gettelman,et al.  Horizontal transport and the dehydration of the stratosphere , 2001 .

[11]  James M. Hoell,et al.  Pacific Exploratory Mission in the tropical Pacific: PEM-Tropics A, August-September 1996 , 1999 .

[12]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[13]  P. Crutzen,et al.  Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry , 1997 .

[14]  B. Anderson,et al.  Impact of anthropogenic and biogenic sources and sinks on carbonyl sulfide in the North Pacific troposphere , 1996 .

[15]  S. Sherwood,et al.  On the control of stratospheric humidity , 2000 .

[16]  S. Rowland,et al.  Comparison of free tropospheric western Pacific air mass classification schemes for the PEM‐West A experiment , 1996 .

[17]  Guy P. Brasseur,et al.  Atmospheric chemistry and global change , 1999 .

[18]  G. Toon,et al.  Vertical profiles of nitrous oxide isotopomer fractionation measured in the stratosphere , 2000 .

[19]  D. Shindell,et al.  Impact of Future Climate and Emission Changes on Stratospheric Aerosols and Ozone , 2002 .

[20]  M. Chin,et al.  A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol , 1995 .

[21]  P. Crutzen,et al.  Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS , 1979, Nature.

[22]  Yuk L. Yung,et al.  The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment: Deployment on the ATLAS Space Shuttle Missions , 1996 .

[23]  Andreas Volz-Thomas,et al.  An improved fast-response vacuum-UV resonance fluorescence CO instrument , 1999 .

[24]  Thomas F. Hanisco,et al.  OH, HO2, and NO in two biomass burning plumes: Sources of HOx and implications for ozone production , 1997 .

[25]  M. Andreae,et al.  Emission of trace gases and aerosols from biomass burning , 2001 .

[26]  T. Bates,et al.  Measurements of atmospheric carbonyl sulfide during the NASA Chemical Instrumentation Test and Evaluation project: Implications for the global COS budget , 1993 .

[27]  R. Leifer Project Airstream: COS measurements in the stratosphere and troposphere , 1989 .