Iterative techniques for computing the linearized manifolds of quasiperiodic tori.

We develop an iterative technique for computing the unstable and stable eigenfunctions of the invariant tori of diffeomorphisms. Using the approach of Jorba [Nonlinearity 14, 943 (2001)], the linearized equations are rewritten as a generalized eigenvalue problem. Casting the system in this light allows us to take advantage of the speed of eigenvalue solvers and create an efficient method for finding the first-order approximations to the invariant manifolds of the torus. We present a numerical scheme based on the power method that can be used to determine the behavior normal to such tori, and give some examples of the application of the method. We confirm the qualitative conclusions of the Melnikov calculations of Lomeli and Meiss [Nonlinearity 16, 1573 (2003)] for a volume-preserving mapping.

[1]  Stephen Wiggins,et al.  Chaotic transport in dynamical systems , 1991 .

[2]  J. Meiss,et al.  Quadratic volume preserving maps , 1997, chao-dyn/9706001.

[3]  Bernd Krauskopf,et al.  Growing 1D and Quasi-2D Unstable Manifolds of Maps , 1998 .

[4]  Àngel Jorba,et al.  Numerical computation of the normal behaviour of invariant curves of n-dimensional maps , 2001 .

[5]  O. Piro,et al.  Transport of Passive scalars: Kam Surfaces and Diffusion in Three-Dimensional Liouvillian Maps , 1989 .

[6]  Carles Simó,et al.  A Formal Approximation of the Splitting of Separatrices in the Classical Arnold's Example of Diffusi , 1999 .

[7]  Carles Simó,et al.  Hamiltonian systems with three or more degrees of freedom , 1999 .

[8]  Debin Huang,et al.  Invariant tori and chaotic streamlines in the ABC flow , 1998 .

[9]  G. Sell,et al.  Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems , 1981 .

[10]  A. Ralston A first course in numerical analysis , 1965 .

[11]  Dana D. Hobson,et al.  An efficient method for computing invariant manifolds of planar maps , 1993 .

[12]  Kim,et al.  Simultaneous rational approximations in the study of dynamical systems. , 1986, Physical review. A, General physics.

[13]  J. Meiss,et al.  Heteroclinic intersections between Invariant Circles of Volume-Preserving Maps , 2002, nlin/0211027.

[14]  J. Fröhlich,et al.  Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .

[15]  L. Eliasson Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum , 1997 .

[16]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[17]  Piro,et al.  Diffusion in three-dimensional Liouvillian maps. , 1988, Physical review letters.

[18]  Bernd Krauskopf,et al.  Globalizing Two-Dimensional Unstable Manifolds of Maps , 1998 .

[19]  S. Wiggins Normally Hyperbolic Invariant Manifolds in Dynamical Systems , 1994 .

[20]  Russell Johnson,et al.  Topological dynamics and linear differential systems , 1982 .

[21]  G. Vegter,et al.  Algorithms for computing normally hyperbolic invariant manifolds , 1997 .

[22]  Pierre Lochak,et al.  Arnold Diffusion; a Compendium of Remarks and Questions , 1999 .

[23]  Àngel Jorba,et al.  On the reducibility of linear differential equations with quasiperiodic coefficients , 1992 .

[24]  Marcelo O Magnasco,et al.  Bailout embeddings and neutrally buoyant particles in three-dimensional flows. , 2002, Physical review letters.

[25]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[26]  Carles Simó,et al.  Hill's equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena , 1998 .

[27]  John Guckenheimer,et al.  A Fast Method for Approximating Invariant Manifolds , 2004, SIAM J. Appl. Dyn. Syst..

[28]  S. Wiggins,et al.  Regular and chaotic particle motion near a helical vortex filament , 1998 .

[29]  Rafael de la Llave,et al.  A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .

[30]  A. Osbaldestin,et al.  Smooth and nonsmooth dependence of Lyapunov vectors upon the angle variable on a torus in the context of torus-doubling transitions in the quasiperiodically forced Hénon map. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  J. Meiss,et al.  Heteroclinic primary intersections and codimension one Melnikov method for volume-preserving maps. , 2000, Chaos.

[32]  Nonnormally hyperbolic invariant curves for maps in R3 and doubling bifurcation , 1989 .

[33]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION: WHAT IS LOW-DIMENSIONAL DYNAMICS? , 1995 .

[34]  R. Llave,et al.  Smooth Ergodic Theory and Its Applications , 2001 .

[35]  Ale Jan Homburg,et al.  Computing Invariant Sets , 2003, Int. J. Bifurc. Chaos.

[36]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[37]  R. Llave,et al.  Lindstedt series for lower dimensional tori , 1999 .

[38]  T. Cusick Formulas for some diophantine approximation constants , 1972, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[39]  Y. Sinai,et al.  THE EXPONENTIAL LOCALIZATION AND STRUCTURE OF THE SPECTRUM FOR 1D QUASI-PERIODIC DISCRETE SCHRÖDINGER OPERATORS , 1991 .

[40]  R. Llave,et al.  The parameterization method for invariant manifolds. I: Manifolds associated to non-resonant subspaces , 2003 .

[41]  Carles Simó,et al.  Averaging under Fast Quasiperiodic Forcing , 1994 .

[42]  G. Rangarajan,et al.  Computation of the Lyapunov spectrum for continuous-time dynamical systems and discrete maps. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  R. Llave,et al.  The parameterization method for invariant manifolds. II: Regularity with respect to parameters , 2003 .