THE SIMPLE LINEAR CALIBRATION PROBLEM AS AN OPTIMAL EXPERIMENTAL DESIGN

ABSTRACT The aim of this paper is to consider the linear calibration problem through an optimal design approach, to evaluate the approximate variance of the calibrating value and provide approximate confidence intervals. The sequential approach through Stochastic Approximation is also applied to obtain a D-optimal design is considered.

[1]  Christos P. Kitsos,et al.  Quasi-Sequential Procedures for the Calibration Problem , 1992 .

[2]  Y. Tong,et al.  Optimal Allocation of Observations in Inverse Linear Regression , 1977 .

[3]  Raymond H. Myers,et al.  Optimal Experimental Designs for Estimating the Independent Variable in Regression , 1968 .

[4]  J. Buonaccorsi Design considerations for calibration , 1986 .

[5]  B. Moser,et al.  A new sequential design based on the robbins-monro procedure , 1991 .

[6]  G. K. Shukla On the Problem of Calibration , 1972 .

[7]  Y. Tong,et al.  A SEQUENTIAL SOLUTION TO THE INVERSE LINEAR REGRESSION PROBLEM , 1974 .

[8]  D. M. Titterington,et al.  Recent advances in nonlinear experiment design , 1989 .

[9]  Christine Osborne,et al.  Statistical Calibration: A Review , 1991 .

[10]  F. Walters,et al.  The Calibration Problem in Statistics and Its Application to Chemistry , 1988 .

[11]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[12]  D. Kurtz The use of regression and statistical methods to establish calibration graphs in chromatography , 1983 .

[13]  G. Elfving Optimum Allocation in Linear Regression Theory , 1952 .

[14]  Christos P. Kitsos,et al.  Robust Linear Calibration , 1995 .

[15]  R. Schwabe Maximin efficient designs another view at D-optimality , 1997 .

[16]  J. Buonaccorsi,et al.  OPTIMAL DESIGNS FOR RATIOS OF LINEAR-COMBINATIONS IN THE GENERAL LINEAR-MODEL , 1986 .

[17]  Raymond H. Myers,et al.  Optical designs for the inverse regression method of calibration , 1973 .

[18]  James N. Miller Basic statistical methods for Analytical Chemistry. Part 2. Calibration and regression methods. A review , 1991 .

[19]  J. J. Leary,et al.  Constrained calibration curves: a novel application of lagrange multipliers in analytical chemistry , 1985 .

[20]  Franklin A. Graybill,et al.  Theory and Application of the Linear Model , 1976 .

[21]  Michael Jackson,et al.  Optimal Design of Experiments , 1994 .