Solving Systems of Quadratic Equations via Exponential-type Gradient Descent Algorithm

We consider the rank minimization problem from quadratic measurements, i.e., recovering a rank $r$ matrix $X \in \mathbb{R}^{n \times r}$ from $m$ scalar measurements $y_i=a_i^{\top} XX^{\top} a_i,\;a_i\in \mathbb{R}^n,\;i=1,\ldots,m$. Such problem arises in a variety of applications such as quadratic regression and quantum state tomography. We present a novel algorithm, which is termed exponential-type gradient descent algorithm, to minimize a non-convex objective function $f(U)=\frac{1}{4m}\sum_{i=1}^m(y_i-a_i^{\top} UU^{\top} a_i)^2$. This algorithm starts with a careful initialization, and then refines this initial guess by iteratively applying exponential-type gradient descent. Particularly, we can obtain a good initial guess of $X$ as long as the number of Gaussian random measurements is $O(nr)$, and our iteration algorithm can converge linearly to the true $X$ (up to an orthogonal matrix) with $m=O\left(nr\log (cr)\right)$ Gaussian random measurements.

[1]  Sujay Sanghavi,et al.  The Local Convexity of Solving Systems of Quadratic Equations , 2015, 1506.07868.

[2]  Andrea J. Goldsmith,et al.  Exact and Stable Covariance Estimation From Quadratic Sampling via Convex Programming , 2013, IEEE Transactions on Information Theory.

[3]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[4]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[5]  Dan Edidin,et al.  An algebraic characterization of injectivity in phase retrieval , 2013, ArXiv.

[6]  Robert W. Harrison,et al.  Phase problem in crystallography , 1993 .

[7]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[8]  Tom Goldstein,et al.  PhasePack: A phase retrieval library , 2017, 2017 51st Asilomar Conference on Signals, Systems, and Computers.

[9]  Tom Goldstein,et al.  PhaseMax: Convex Phase Retrieval via Basis Pursuit , 2016, IEEE Transactions on Information Theory.

[10]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[11]  Zhiqiang Xu,et al.  The minimal measurement number for low-rank matrices recovery , 2015, ArXiv.

[12]  Inderjit S. Dhillon,et al.  Rank minimization via online learning , 2008, ICML '08.

[13]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[14]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[15]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[16]  John D. Lafferty,et al.  A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements , 2015, NIPS.

[17]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[18]  Rick P. Millane,et al.  Phase retrieval in crystallography and optics , 1990 .

[19]  Holger Rauhut,et al.  Low-Rank Matrix Recovery via Rank One Tight Frame Measurements , 2016, ArXiv.

[20]  L. Demanet,et al.  Stable Optimizationless Recovery from Phaseless Linear Measurements , 2012, Journal of Fourier Analysis and Applications.

[21]  Bing Gao,et al.  Phaseless Recovery Using the Gauss–Newton Method , 2016, IEEE Transactions on Signal Processing.

[22]  Yuxin Chen,et al.  Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems , 2015, NIPS.

[23]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging: A contemporary overview , 2015, IEEE Signal Processing Magazine.

[24]  Prateek Jain,et al.  Phase Retrieval Using Alternating Minimization , 2013, IEEE Transactions on Signal Processing.

[25]  Radu Balan,et al.  Reconstruction of Signals from Magnitudes of Redundant Representations: The Complex Case , 2012, Found. Comput. Math..

[26]  Holger Rauhut,et al.  Low rank matrix recovery from rank one measurements , 2014, ArXiv.

[27]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[28]  Yonina C. Eldar,et al.  Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow , 2016, IEEE Transactions on Information Theory.

[29]  Yue Sun,et al.  Low-Rank Positive Semidefinite Matrix Recovery From Corrupted Rank-One Measurements , 2016, IEEE Transactions on Signal Processing.