Superlattice Crystals–Mimic, Flexible/Functional Ceramic Membranes: Beyond Polymeric Battery Separators

[1]  Hyun-Wook Lee,et al.  Spinel LiMn2O4 nanorods as lithium ion battery cathodes. , 2008, Nano letters.

[2]  T. Pinnavaia,et al.  Access in mesoporous materials: Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation , 1997 .

[3]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[4]  David Farrusseng,et al.  Porous ceramic membranes for catalytic reactors — overview and new ideas , 2001 .

[5]  Jeong-Hoon Kim,et al.  Inverse opal-inspired, nanoscaffold battery separators: a new membrane opportunity for high-performance energy storage systems. , 2014, Nano letters.

[6]  Tatsuo Nakamura,et al.  Composite nonwoven separator for lithium-ion battery: Development and characterization , 2010 .

[7]  Kristina Edström,et al.  The cathode-electrolyte interface in the Li-ion battery , 2004 .

[8]  Ozan Toprakci,et al.  A review of recent developments in membrane separators for rechargeable lithium-ion batteries , 2014 .

[9]  Seong-Geun Oh,et al.  Effects of the concentrations of precursor and catalyst on the formation of monodisperse silica particles in sol–gel reaction , 2011 .

[10]  Hochun Lee,et al.  Effects of electrolyte-volume-to-electrode-area ratio on redox behaviors of graphite anodes for lithium-ion batteries , 2014 .

[11]  Bruno Scrosati,et al.  An advanced lithium ion battery based on high performance electrode materials. , 2011, Journal of the American Chemical Society.

[12]  Sang-Young Lee,et al.  Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries , 2014, Scientific Reports.

[13]  Dong-Won Kim,et al.  Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries , 2010 .

[14]  K. Sohn,et al.  Gadolinium-Doped LiMn2O4 Cathodes in Li Ion Batteries: Understanding the Stabilized Structure and Enhanced Electrochemical Kinetics , 2012 .

[15]  H. Bang,et al.  Functionality of oxide coating for Li [Li0.05Ni0.4Co0.15Mn0.4]O2 as positive electrode materials for lithium-ion secondary batteries , 2007 .

[16]  Jonathan J. Travis,et al.  Ion-Exchangeable Functional Binders and Separator for High Temperature Performance of Li1.1Mn1.86Mg0.04O4 Spinel Electrodes in Lithium Ion Batteries , 2013 .

[17]  C. Lee,et al.  Mixed ion/electron-conductive protective soft nanomatter-based conformal surface modification of lithium-ion battery cathode materials , 2014 .

[18]  Jaephil Cho,et al.  Complete blocking of Mn3+ ion dissolution from a LiMn2O4 spinel intercalation compound by Co3O4 coating , 2001 .

[19]  S. Komaba,et al.  Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries , 2002 .

[20]  Kenneth M. Kemner,et al.  Functionalized Monolayers on Ordered Mesoporous Supports , 1997 .

[21]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[22]  Jeff Tollefson,et al.  Car industry: Charging up the future , 2008, Nature.

[23]  Fengting Li,et al.  Synthesis of thiol-functionalized MCM-41 mesoporous silicas and its application in Cu(II), Pb(II), Ag(I), and Cr(III) removal , 2010 .

[24]  S. Ramakrishna,et al.  Nanocomposite fabric formation by electrospinning and electrospraying technologies , 2009 .

[25]  Kai Song,et al.  Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self‐Assembly in Magnetic Field , 2009 .

[26]  Jaephil Cho,et al.  High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries. , 2014, Nano letters.

[27]  M. Armand,et al.  Building better batteries , 2008, Nature.

[28]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[29]  Jaephil Cho,et al.  PVP-functionalized nanometre scale metal oxide coatings for cathode materials: successful application to LiMn2O4 spinel nanoparticles. , 2008, Chemical communications.

[30]  Taeeun Yim,et al.  A facile method for construction of a functionalized multi-layered separator to enhance cycle performance of lithium manganese oxide , 2013 .

[31]  Xin Li,et al.  Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries , 2008 .

[32]  J. Choi,et al.  A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries. , 2012, Nano letters.

[33]  Shengbo Zhang A review on the separators of liquid electrolyte Li-ion batteries , 2007 .

[34]  Jesus Santamaria,et al.  Catalytic reactors based on porous ceramic membranes , 1999 .

[35]  Meltem Yanilmaz,et al.  Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques , 2014 .

[36]  Ning Li,et al.  Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. , 2014, Nano letters.

[37]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[38]  Myung-Hyun Ryou,et al.  Improved cycle lives of LiMn2O4 cathodes in lithium ion batteries by an alginate biopolymer from seaweed , 2013 .

[39]  H. Jaeger,et al.  Elastic membranes of close-packed nanoparticle arrays. , 2007, Nature materials.

[40]  P. Stroeve,et al.  Surface Characterization of the Spinel LixMn2O4 Cathode before and after Storage at Elevated Temperatures , 2001 .

[41]  Weishan Li,et al.  A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery , 2013 .

[42]  L. Qi,et al.  Colloidal‐Crystal‐Assisted Patterning of Crystalline Materials , 2010, Advanced materials.