Height Fluctuations in the Honeycomb Dimer Model

We study a model of random surfaces arising in the dimer model on the honeycomb lattice. For a fixed “wire frame” boundary condition, as the lattice spacing ϵ → 0, Cohn, Kenyon and Propp [3] showed the almost sure convergence of a random surface to a non-random limit shape Σ0. In [12], Okounkov and the author showed how to parametrize the limit shapes in terms of analytic functions, in particular constructing a natural conformal structure on them. We show here that when Σ0 has no facets, for a family of boundary conditions approximating the wire frame, the large-scale surface fluctuations (height fluctuations) about Σ0 converge as ϵ → 0 to a Gaussian free field for the above conformal structure. We also show that the local statistics of the fluctuations near a given point x are, as conjectured in [3], given by the unique ergodic Gibbs measure (on plane configurations) whose slope is the slope of the tangent plane of Σ0 at x.

[1]  Scott Sheffield,et al.  Random Surfaces , 2003, math/0304049.

[2]  Jean-Claude Fournier Pavage des figures planes sans trous par des dominos: Fondement graphique de l'algorithme de Thurston, parallélisation, unicité et décomposition , 1996, Theor. Comput. Sci..

[3]  Richard Kenyon,et al.  Conformal invariance of domino tiling , 1999 .

[4]  R. Kenyon,et al.  Dimers and amoebae , 2003, math-ph/0311005.

[5]  R. Kenyon,et al.  Dominos and the Gaussian Free Field , 2000, math-ph/0002027.

[6]  David Bruce Wilson,et al.  Trees and Matchings , 2000, Electron. J. Comb..

[7]  Michael Larsen,et al.  The Shape of a Typical Boxed Plane Partition , 1998, math/9801059.

[8]  L. Ahlfors,et al.  RIEMANN'S MAPPING THEOREM FOR VARIABLE METRICS* , 1960 .

[9]  J. Propp,et al.  A variational principle for domino tilings , 2000, math/0008220.

[10]  JON HANDY,et al.  THE LAPLACIAN AND DIRAC OPERATORS ON CRITICAL PLANAR GRAPHS , 2005 .

[11]  L. Lovász Matching Theory (North-Holland mathematics studies) , 1986 .

[12]  R. Kenyon,et al.  Limit shapes and the complex Burgers equation , 2005, math-ph/0507007.

[13]  J. Fournier Tiling with dominoes pictures of plane figures without holes: graphic basis of the Thurston algorithm, parallelization, uniqueness and decomposition , 1996 .

[14]  R. Kenyon Local statistics of lattice dimers , 2001, math/0105054.

[15]  J. Fournier Pavage des figures planes sans trous par des dominos : fondement graphique de l'algorithme de Thurston et parallélisation , 1995 .

[16]  K. Roberts,et al.  Thesis , 2002 .

[17]  S. Sheffield Gaussian free fields for mathematicians , 2003, math/0312099.

[18]  Richard W. Kenyon,et al.  Dimers, tilings and trees , 2004, J. Comb. Theory, Ser. B.

[19]  Jerome Percus,et al.  One More Technique for the Dimer Problem , 1969 .