Height Fluctuations in the Honeycomb Dimer Model
暂无分享,去创建一个
[1] Scott Sheffield,et al. Random Surfaces , 2003, math/0304049.
[2] Jean-Claude Fournier. Pavage des figures planes sans trous par des dominos: Fondement graphique de l'algorithme de Thurston, parallélisation, unicité et décomposition , 1996, Theor. Comput. Sci..
[3] Richard Kenyon,et al. Conformal invariance of domino tiling , 1999 .
[4] R. Kenyon,et al. Dimers and amoebae , 2003, math-ph/0311005.
[5] R. Kenyon,et al. Dominos and the Gaussian Free Field , 2000, math-ph/0002027.
[6] David Bruce Wilson,et al. Trees and Matchings , 2000, Electron. J. Comb..
[7] Michael Larsen,et al. The Shape of a Typical Boxed Plane Partition , 1998, math/9801059.
[8] L. Ahlfors,et al. RIEMANN'S MAPPING THEOREM FOR VARIABLE METRICS* , 1960 .
[9] J. Propp,et al. A variational principle for domino tilings , 2000, math/0008220.
[10] JON HANDY,et al. THE LAPLACIAN AND DIRAC OPERATORS ON CRITICAL PLANAR GRAPHS , 2005 .
[11] L. Lovász. Matching Theory (North-Holland mathematics studies) , 1986 .
[12] R. Kenyon,et al. Limit shapes and the complex Burgers equation , 2005, math-ph/0507007.
[13] J. Fournier. Tiling with dominoes pictures of plane figures without holes: graphic basis of the Thurston algorithm, parallelization, uniqueness and decomposition , 1996 .
[14] R. Kenyon. Local statistics of lattice dimers , 2001, math/0105054.
[15] J. Fournier. Pavage des figures planes sans trous par des dominos : fondement graphique de l'algorithme de Thurston et parallélisation , 1995 .
[16] K. Roberts,et al. Thesis , 2002 .
[17] S. Sheffield. Gaussian free fields for mathematicians , 2003, math/0312099.
[18] Richard W. Kenyon,et al. Dimers, tilings and trees , 2004, J. Comb. Theory, Ser. B.
[19] Jerome Percus,et al. One More Technique for the Dimer Problem , 1969 .