Ultrafast fluorescence dynamics of flavin adenine dinucleotide in pyranose 2-oxidases variants and their complexes with acetate: Conformational heterogeneity with different dielectric constants

[1]  P. Chaiyen,et al.  Conformational heterogeneity in pyranose 2-oxidase from Trametes multicolor revealed by ultrafast fluorescence dynamics , 2012 .

[2]  Nadtanet Nunthaboot,et al.  Structural basis for the temperature-induced transition of D-amino acid oxidase from pig kidney revealed by molecular dynamic simulation and photo-induced electron transfer. , 2012, Physical chemistry chemical physics : PCCP.

[3]  Nadtanet Nunthaboot,et al.  Simultaneous analyses of photoinduced electron transfer in the wild type and four single substitution isomers of the FMN binding protein from Desulfovibrio vulgaris, Miyazaki F. , 2011, Physical chemistry chemical physics : PCCP.

[4]  N. Mataga,et al.  Photoinduced electron transfer in wild type and mutated flavodoxin from Desulfovibrio vulgaris, strain Miyazaki F.: Energy gap law , 2011 .

[5]  N. Mataga,et al.  Analysis of photoinduced electron transfer in flavodoxin , 2011 .

[6]  D. Haltrich,et al.  H-bonding and positive charge at the N5/O4 locus are critical for covalent flavin attachment in trametes pyranose 2-oxidase. , 2010, Journal of molecular biology.

[7]  D. Haltrich,et al.  Importance of the gating segment in the substrate‐recognition loop of pyranose 2‐oxidase , 2010, The FEBS journal.

[8]  N. Mataga,et al.  Effects of the disappearance of one charge on ultrafast fluorescence dynamics of the FMN binding protein. , 2010, The journal of physical chemistry. B.

[9]  P. Chaiyen,et al.  Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism. , 2010, Biochemistry.

[10]  D. Haltrich,et al.  A Conserved Active-site Threonine Is Important for Both Sugar and Flavin Oxidations of Pyranose 2-Oxidase* , 2010, The Journal of Biological Chemistry.

[11]  D. Haltrich,et al.  Kinetic mechanism of pyranose 2-oxidase from trametes multicolor. , 2009, Biochemistry.

[12]  Nadtanet Nunthaboot,et al.  Simulation of ultrafast non-exponential fluorescence decay induced by electron transfer in FMN binding protein , 2009 .

[13]  Nadtanet Nunthaboot,et al.  Simultaneous analysis of ultrafast fluorescence decays of FMN binding protein and its mutated proteins by molecular dynamic simulation and electron transfer theory. , 2008, The journal of physical chemistry. B.

[14]  D. Haltrich,et al.  Detection of a C4a-hydroperoxyflavin intermediate in the reaction of a flavoprotein oxidase. , 2008, Biochemistry.

[15]  N. Mataga,et al.  Comparison between ultrafast fluorescence dynamics of FMN binding protein from Desulfovibrio vulgaris, strain Miyazaki, in solution vs crystal phases. , 2007, The journal of physical chemistry. B.

[16]  D. Haltrich,et al.  Structural Basis for Substrate Binding and Regioselective Oxidation of Monosaccharides at C3 by Pyranose 2-Oxidase* , 2006, Journal of Biological Chemistry.

[17]  D. Haltrich,et al.  Crystal structure of the 270 kDa homotetrameric lignin-degrading enzyme pyranose 2-oxidase. , 2004, Journal of molecular biology.

[18]  D. Haltrich,et al.  Identification of the covalent flavin adenine dinucleotide-binding region in pyranose 2-oxidase from Trametes multicolor. , 2003, Analytical biochemistry.

[19]  N. Mataga,et al.  Femtosecond fluorescence dynamics of flavoproteins: Comparative studies on flavodoxin, its site-directed mutants, and riboflavin binding protein regarding ultrafast electron transfer in protein nanospaces , 2002 .

[20]  R. ten Have,et al.  Oxidative mechanisms involved in lignin degradation by white-rot fungi. , 2001, Chemical reviews.

[21]  A. Zewail,et al.  Femtosecond dynamics of flavoproteins: Charge separation and recombination in riboflavine (vitamin B2)-binding protein and in glucose oxidase enzyme , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Haltrich,et al.  Purification and Characterization of Pyranose Oxidase from the White Rot Fungus Trametes multicolor , 2001, Applied and Environmental Microbiology.

[23]  F. Tanaka,et al.  Dynamics and Mechanisms of Ultrafast Fluorescence Quenching Reactions of Flavin Chromophores in Protein Nanospace , 2000 .

[24]  N. Winograd,et al.  Femtosecond Photoionization of Ion Beam Desorbed Aliphatic and Aromatic Amino Acids: Fragmentation via α-Cleavage Reactions , 1999 .

[25]  P. Ander,et al.  Sugar oxidoreductases and veratryl alcohol oxidase as related to lignin degradation. , 1997, Journal of biotechnology.

[26]  G. Daniel,et al.  Only C-2 specific glucose oxidase activity is expressed in ligninolytic cultures of the white rot fungus Phanerochaete chrysosporium , 1996, Archives of Microbiology.

[27]  M. Michel-beyerle,et al.  Energy Gap Law for Nonradiative and Radiative Charge Transfer in Isolated and in Solvated Supermolecules , 1994 .

[28]  J. Jortner,et al.  Charge separation and recombination in isolated supermolecules , 1993 .

[29]  N. Mataga,et al.  Effects of the donor-acceptor distance distribution on the energy gap laws of charge separation and charge recombination reactions in polar solutions , 1992 .

[30]  Kurt Warncke,et al.  Nature of biological electron transfer , 1992, Nature.

[31]  J. Jortner,et al.  Non-Arrhenius temperature dependence of electron-transfer rates , 1991 .

[32]  N. Mataga,et al.  DYNAMICS OF EXCITED FLAVOPROTEINS—PICOSECOND LASER PHOTOLYSIS STUDIES , 1987 .

[33]  D. D. Yue,et al.  Theory of Electric Polarization , 1974 .

[34]  Walter J. Murphy,et al.  ADVANCES IN CHEMISTRY SERIES: Numbers 15 and 17 Demonstrate Rapidly Crowing Interest in Documentation; International Conference To Be Held in 1958 , 1956 .

[35]  Rudolph A. Marcus,et al.  Electrostatic Free Energy and Other Properties of States Having Nonequilibrium Polarization. I , 1956 .

[36]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[37]  Nadtanet Nunthaboot,et al.  Simultaneous analysis of photoinduced electron transfer in wild type and mutated AppAs , 2010 .

[38]  J. Volc,et al.  Glucose-2-oxidase activity in mycelial cultures of basidiomycetes , 2008, Folia Microbiologica.

[39]  B. Stevens,et al.  Progress in reaction kinetics , 1961 .