Analysis of Variance for Functional Data
暂无分享,去创建一个
Introduction Functional Data Motivating Functional Data Why Is Functional Data Analysis Needed? Overview of the Book Implementation of Methodologies Options for Reading This Book Nonparametric Smoothers for a Single Curve Introduction Local Polynomial Kernel Smoothing Regression Splines Smoothing Splines P-Splines Reconstruction of Functional Data Introduction Reconstruction Methods Accuracy of LPK Reconstructions Accuracy of LPK Reconstruction in FLMs Stochastic Processes Introduction Stochastic Processes x2-Type Mixtures F-Type Mixtures One-Sample Problem for Functional Data ANOVA for Functional Data Introduction Two-Sample Problem One-Way ANOVA Two-Way ANOVA Linear Models with Functional Responses Introduction Linear Models with Time-Independent Covariates Linear Models with Time-Dependent Covariates Ill-Conditioned Functional Linear Models Introduction Generalized Inverse Method Reparameterization Method Side-Condition Method Diagnostics of Functional Observations Introduction Residual Functions Functional Outlier Detection Influential Case Detection Robust Estimation of Coefficient Functions Outlier Detection for a Sample of Functions Heteroscedastic ANOVA for Functional Data Introduction Two-Sample Behrens-Fisher Problems Heteroscedastic One-Way ANOVA Heteroscedastic Two-Way ANOVA Test of Equality of Covariance Functions Introduction Two-Sample Case Multi-Sample Case Bibliography Index Technical Proofs, Concluding Remarks, Bibliographical Notes, and Exercises appear at the end of most chapters.