Degenerate First-Order Quasi-variational Inequalities: An Approach to Approximate the Value Function

The originality of this paper is to deal with the particular case of null infimum jump costs in the infinite horizon impulse control problem. The value function of such problems is a viscosity solution of the classic quasi-variational inequality (QVI) associated, but not the unique one. This is a drawback to characterize it. In this paper, a new QVI for which the value function is the unique viscosity solution is given. This allows us to approximate the value function. So, we give some discrete approximations of the new QVI and prove that the approximate value function converges locally uniformly, toward the value function of the impulse control problem with zero lower bound of impulse cost. We choose the classic example of continuous time inventory control in $\mathbb{R}^n$ to illustrate the results of this paper.

[1]  F. Grognard,et al.  Two models of interfering predators in impulsive biological control , 2010, Journal of biological dynamics.

[2]  J. Warga,et al.  Variational Problems with Unbounded Controls , 1965 .

[3]  A. Bensoussan,et al.  Contrôle impulsionnel et inéquations quasi variationnelles , 1982 .

[4]  Maurizio Falcone,et al.  ANALYSIS AND APPROXIMATION OF THE INFINITE-HORIZON PROBLEM WITH IMPULSIVE CONTROLS , 1997 .

[5]  Naïma El Farouq Deterministic impulse control problems: Two discrete approximations of the quasi-variational inequality , 2017, J. Comput. Appl. Math..

[6]  J. Warga Optimal control of differential and functional equations , 1972 .

[7]  Alain Bensoussan Dynamic Programming and Inventory Control , 2011 .

[8]  Ludovic Mailleret,et al.  The Effect of Partial Crop Harvest on Biological Pest Control , 2007 .

[9]  G. Barles,et al.  An approach of deterministic control problems with unbounded data , 1990 .

[10]  Boris M. Miller,et al.  Impulsive Control in Continuous and Discrete-Continuous Systems , 2003 .

[11]  A. J. Shaiju,et al.  Differential games with continuous, switching and impulse controls , 2005 .

[12]  G. Barles,et al.  Deterministic Impulse Control Problems , 1985 .

[13]  Naïma El Farouq,et al.  An Impulsive Differential Game Arising in Finance with Interesting Singularities , 2006 .

[14]  C. Sartori,et al.  Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems , 2008 .

[15]  ALGORITHM TO COMPUTE THE VISCOSITY SOLUTION OF THE HAMILTON-JACOBI-BELLMAN EQUATION. , 1986 .

[16]  P. Bernhard,et al.  A Robust Control Approach to Option Pricing: the Uniqueness Theorem , 2010 .

[17]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[18]  S. Dharmatti,et al.  Infinite dimensional differential games with hybrid controls , 2007, 0707.1966.

[19]  Qiji J. Zhu,et al.  The Equivalence of Extremals in Different Representations of Unbounded Control Problems , 1994 .

[20]  H. Ishii Perron’s method for Hamilton-Jacobi equations , 1987 .

[21]  W. Rudin Real and complex analysis , 1968 .

[22]  I. Dolcetta On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming , 1983 .

[23]  P. Bernhard,et al.  Proportional Transaction Costs in the Robust Control Approach to Option Pricing: The Uniqueness Theorem , 2015 .

[24]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[25]  P. Lions,et al.  A remark on regularization in Hilbert spaces , 1986 .

[26]  C. Marle Géométrie des systèmes mécaniques à liaisons actives , 1991 .

[27]  Franco Rampazzo,et al.  Hamilton-Jacobi-Bellman equations with fast gradient-dependence , 2000 .

[28]  Mythily Ramaswamy,et al.  Zero-Sum Differential Games Involving Hybrid Controls , 2006 .

[29]  Jean Pierre Aubin,et al.  Applied abstract analysis , 1977 .

[30]  G. Barles,et al.  Deterministic Minimax Impulse Control , 2010 .

[31]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[32]  R. González,et al.  On Deterministic Control Problems: An Approximation Procedure for the Optimal Cost I. The Stationary Problem , 1985 .

[33]  F. Rampazzo,et al.  Dynamic Programming for Nonlinear Systems Driven by Ordinaryand Impulsive Controls , 1996 .

[34]  H. Ishii,et al.  Approximate solutions of the bellman equation of deterministic control theory , 1984 .

[35]  Frédéric Grognard,et al.  Global stability and optimisation of a general impulsive biological control model. , 2008, Mathematical biosciences.

[36]  Vassili N. Kolokoltsov,et al.  The Interval Market Model in Mathematical Finance: Game-Theoretic Methods , 2012 .

[37]  John L. Casti Introduction to the Mathematical Theory of Control Processes, Volume I: Linear Equations and Quadratic Criteria, Volume II: Nonlinear Processes , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[38]  R. González,et al.  On deterministic control problems: An approximation procedure for the optimal cost , 1983, The 22nd IEEE Conference on Decision and Control.

[39]  A. Bressan,et al.  On differential systems with vector-valued impulsive controls. , 1988 .