Architectures for molecular electronic computers. I. Logic structures and an adder designed from molecular electronic diodes

Recently, there have been significant advances in the fabrication and demonstration of individual molecular electronic wires and diode switches. This paper reviews those developments and shows how demonstrated molecular devices might be combined to design molecular-scale electronic digital computer logic. The design for the demonstrated rectifying molecular diode switches is refined and made more compatible with the demonstrated wires through the introduction of intramolecular dopant groups chemically bonded to modified molecular wires. Quantum mechanical calculations are performed to characterize some of the electrical properties of the proposed molecular diode switches. Explicit structural designs are displayed for AND, OR, and XOR gates that are built from molecular wires and molecular diode switches. The diode-based molecular electronic logic gates are combined to produce a design for a molecular-scale electronic half adder and a molecular-scale electronic full adder. These designs correspond to conductive monomolecular circuit structures that would be one million times smaller in area than the corresponding micron-scale digital logic circuits fabricated on conventional solid-state semiconductor computer chips. It appears likely that these nanometer-scale molecular electronic logic circuits could be fabricated and tested in the foreseeable future. At the very least, such molecular circuit designs constitute an exploration of the ultimate limits of electronic computer circuit miniaturization.

[1]  Christian Joachim,et al.  Conductance of molecular wires connected or bonded in parallel , 1999 .

[2]  Lillian Hoddeson,et al.  Crystal Fire: The Birth of the Information Age , 1998 .

[3]  D. Muller,et al.  The electronic structure at the atomic scale of ultrathin gate oxides , 1999, Nature.

[4]  Vladimiro Mujica,et al.  The injecting energy at molecule/metal interfaces: Implications for conductance of molecular junctions from an ab initio molecular description , 1999 .

[5]  Tian,et al.  Electronic conduction through organic molecules. , 1996, Physical review. B, Condensed matter.

[6]  C. Lent,et al.  Realization of a Functional Cell for Quantum-Dot Cellular Automata , 1997 .

[7]  Alan M. Cassell,et al.  Chemical vapor deposition of methane for single-walled carbon nanotubes , 1998 .

[8]  Martin,et al.  Molecular rectifier. , 1993, Physical review letters.

[9]  Hongjie Dai,et al.  Exploiting the properties of carbon nanotubes for nanolithography , 1998 .

[10]  Chongwu Zhou Atomic and molecular wires , 1999 .

[11]  Kenneth A. Smith,et al.  Reversible sidewall functionalization of buckytubes , 1999 .

[12]  Luca Ottaviano,et al.  Rectifying behavior of silicon–phthalocyanine junctions investigated with scanning tunneling microscopy/spectroscopy , 1997 .

[13]  Mark A. Ratner,et al.  On the Long-Range Charge Transfer in DNA , 2000 .

[14]  M. Ratner,et al.  Electron conduction in molecular wires. I. A scattering formalism , 1994 .

[15]  Robert H. Hauge,et al.  Solvation of Fluorinated Single-Wall Carbon Nanotubes in Alcohol Solvents , 1999 .

[16]  Richard C. Jaeger,et al.  Microelectronic Circuit Design , 1996 .

[17]  Eldon Emberly,et al.  Theory of Electrical Conduction Through a Molecule , 1998 .

[18]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[19]  Supriyo Datta,et al.  Current-Voltage Characteristics of Self-Assembled Monolayers by Scanning Tunneling Microscopy , 1997 .

[20]  Madhu Menon,et al.  Carbon Nanotube Based Molecular Electronic Devices , 1998 .

[21]  Muramatsu,et al.  Electronic properties of semiconducting graphitic microtubules. , 1994, Physical review. B, Condensed matter.

[22]  Philip G. Collins,et al.  Nanotube Nanodevice , 1997 .

[23]  G. Scuseria,et al.  Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study , 1999 .

[24]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[25]  J. C. Love,et al.  Architectures for Molecular Electronic Computers , 2002 .

[26]  P. Atkins Quanta: A Handbook of Concepts , 1974 .

[27]  T. D. Dunbar,et al.  Molecular Scale Electronics , 1999 .

[28]  J. Tour,et al.  Are Single Molecular Wires Conducting? , 1996, Science.

[29]  James C. Ellenbogen,et al.  Overview of nanoelectronic devices , 1997, Proc. IEEE.

[30]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[31]  A. Rinzler,et al.  Fluorination of single-wall carbon nanotubes , 1998 .

[32]  Madhu Menon,et al.  Carbon Nanotube ``T Junctions'': Nanoscale Metal-Semiconductor-Metal Contact Devices , 1997 .

[33]  C. Papadopoulos,et al.  Nanoelectronics: Growing Y-junction carbon nanotubes , 1999, Nature.

[34]  H. Liu,et al.  Chapter 6 – High-Frequency Resonant-Tunneling Devices , 1994 .

[35]  M. I. Visscher Transport in mesoscopic charge density wave systems , 1998 .

[36]  J. Tour,et al.  Iterative Divergent/Convergent Approach to Linear Conjugated Oligomers by Successive Doubling of the Molecular Length: A Rapid Route to a 128Å‐Long Potential Molecular Wire , 1994 .

[37]  Zhifeng Ren,et al.  Growth of Highly-Oriented Carbon Nanotubes by Plasma-Enhanced Hot Filament Chemical Vapor Deposition , 1998 .

[38]  Zhifeng Ren,et al.  Growth of a Single Freestanding Multiwall Carbon Nanotube on each Nanonickel Dot , 1999 .

[39]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[40]  Alan M. Cassell,et al.  Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers , 1998, Nature.

[41]  A. E. A. Almaini,et al.  Electronic logic systems (3rd ed.) , 1994 .

[42]  E. K. Wilson DNA CONDUCTANCE CONVERGENCE , 1999 .

[43]  Christine Hillyar Book Reviews: The Essence of Solid-State Electronics: , 1997 .

[44]  P. Atkins,et al.  Molecular Quantum Mechanics , 1970 .

[45]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.

[46]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[47]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[48]  M.A. Reed Progress in molecular scale devices and circuits , 1999, 1999 57th Annual Device Research Conference Digest (Cat. No.99TH8393).

[49]  C. Lent,et al.  Demonstration of a six-dot quantum cellular automata system , 1998 .

[50]  M. Michel-beyerle,et al.  Charge transfer and transport in DNA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[52]  Robert Neilson Boyd,et al.  Organic Chemistry 2nd Ed. , 1956 .

[53]  Philippe Guyot-Sionnest,et al.  Self-assembled molecular rectifiers , 1997 .

[54]  Jeffrey R. Reimers,et al.  Electron transfer and energy transfer through bridged systems III. Tight-binding linkages with zero or non-zero asymptotic band gap , 1994 .

[55]  T. D. Dunbar,et al.  Probing Electronic Properties of Conjugated and Saturated Molecules in Self‐Assembled Monolayers , 1998 .

[56]  James M. Tour,et al.  Molecular Scale Electronics: A Synthetic/Computational Approach to Digital Computing , 1998 .

[57]  Christian Joachim,et al.  Minimal attenuation for tunneling through a molecular wire , 1998 .

[58]  Elizabeth Wilson DNA CONDUCTANCE CONVERGENCE?: New mechanisms claim to resolve much of the debate over how charge migrates through DNA—but questions remain , 1999 .

[59]  J. Tour,et al.  Iterative Divergent/Convergent Approach to Linear Conjugated Oligomers by Successive Doubling of the Molecular Length: A Rapid Route to a 128 Å Long Potential Molecular Wire. , 1994 .

[60]  R. E. Packard,et al.  Observation of ‘third sound’ in superfluid 3He , 1998, Nature.

[61]  J. Tour,et al.  Extended orthogonally fused conducting oligomers for molecular electronic devices , 1991 .

[62]  C. Dekker,et al.  Direct measurement of electrical transport through DNA molecules , 2000, Nature.

[63]  G. Hampikian,et al.  Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J. Christopher Love,et al.  Technologies and Designs for Electronic Nanocomputers , 1995 .

[65]  R. P. Andres,et al.  Coulomb Staircase at Room Temperature in a Self-Assembled Molecular Nanostructure , 1996, Science.

[66]  Noel S. Hush,et al.  Formalism, analytical model, and a priori Green's-function-based calculations of the current-voltage characteristics of molecular wires , 2000 .

[67]  G. Epstein Multiple-Valued Logic Design: an Introduction , 1993 .

[68]  Boris I. Yakobson,et al.  FULLERENE NANOTUBES : C1,000,000 AND BEYOND , 1997 .

[69]  Eklund,et al.  Solution properties of single-walled carbon nanotubes , 1998, Science.

[70]  Abid E. Almaini,et al.  Electronic Logic Systems , 1992 .

[71]  Mark A. Ratner,et al.  Molecular-wire behaviour in p -phenylenevinylene oligomers , 1998, Nature.

[72]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[73]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[74]  Lionel R. Milgrom,et al.  The Colours of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds , 1997 .

[75]  M. Ratner,et al.  Current‐voltage characteristics of molecular wires: Eigenvalue staircase, Coulomb blockade, and rectification , 1996 .

[76]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[77]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[78]  David K. Ferry Quantum Mechanics : An Introduction for Device Physicists and Electrical Engineers, Second Edition , 1995 .

[79]  Gustavo E. Scuseria,et al.  Negative curvature and hyperfullerenes , 1992 .

[80]  Richard H. Bergman Tunnel Diode Logic Circuits , 1960, IRE Trans. Electron. Comput..

[81]  James C. Ellenbogen Advances toward molecular-scale electronic digital logic circuits: a review and prospectus , 1999, Proceedings Ninth Great Lakes Symposium on VLSI.

[82]  Charles M. Lieber,et al.  Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes , 1996, Science.

[83]  B H Robinson,et al.  The design of a biochip: a self-assembling molecular-scale memory device. , 1987, Protein engineering.

[84]  James C. Ellenbogen,et al.  A Brief Overview of Nanoelectronic Devices , 1998 .

[85]  Robert M. Metzger,et al.  Unimolecular electrical rectification in Hexadecylquinolinium Tricyanoquinodimethanide , 1997 .

[86]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[87]  P. Packan,et al.  Pushing the Limits , 1999, Science.

[88]  White,et al.  Helical and rotational symmetries of nanoscale graphitic tubules. , 1993, Physical review. B, Condensed matter.

[89]  M. Reed,et al.  Nanoscale metal/self-assembled monolayer/metal heterostructures , 1997 .

[90]  Mark A. Ratner,et al.  Molecule-interface coupling effects on electronic transport in molecular wires , 1998 .

[91]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[92]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[93]  S. Novick Quanta: a Handbook of Concepts, 2nd ed. , 1992 .

[94]  Hans P. Moravec When will computer hardware match the human brain , 1998 .

[95]  Mathieu Kemp,et al.  Molecular Wires: Charge Transport, Mechanisms, and Control , 1998 .

[96]  M. Itkis,et al.  Dissolution of Single‐Walled Carbon Nanotubes , 1999 .

[97]  Eldon Emberly,et al.  Electrical conductance of molecular wires , 1999 .

[98]  Eldon Emberly,et al.  Theoretical study of electrical conduction through a molecule connected to metallic nanocontacts , 1998 .

[99]  Bernd Giese,et al.  Sequence Dependent Long Range Hole Transport in DNA , 1998 .

[100]  James M. Tour,et al.  Molecular Alligator Clips for Single Molecule Electronics. Studies of Group 16 and Isonitriles Interfaced with Au Contacts , 1999 .

[101]  M. Ratner,et al.  Electron conduction in molecular wires. II. Application to scanning tunneling microscopy , 1994 .