Signal analysis and feature generation for pattern identification of partial discharges in high-voltage equipment
暂无分享,去创建一个
Javier Ortego | O. Perpiñán | F. Garnacho | Miguel A. Sanchez-Urán | F. Álvarez | O. Perpiñán | F. Álvarez | F. Garnacho | J. Ortego | M. Sanchez-Uran | M. Sánchez-Urán
[1] Anil K. Jain,et al. Data clustering: a review , 1999, CSUR.
[2] Edward Rolf Tufte,et al. The visual display of quantitative information , 1985 .
[3] A. Krivda,et al. Recognition of discharges: Discrimination and classification , 1995 .
[4] Daniel J. Denis,et al. The early origins and development of the scatterplot. , 2005, Journal of the history of the behavioral sciences.
[5] E. Gulski,et al. Computer-aided recognition of discharge sources , 1992 .
[6] P. Fayers,et al. The Visual Display of Quantitative Information , 1990 .
[7] Adly Girgis,et al. A Quantitative Study of Pitfalls in the FFT , 1980, IEEE Transactions on Aerospace and Electronic Systems.
[8] Daniel B. Carr,et al. Scatterplot matrix techniques for large N , 1986 .
[9] L. Satish,et al. Can fractal features be used for recognizing 3-d partial discharge patterns , 1995 .
[10] M.D. Judd. Radiometric partial discharge detection , 2008, 2008 International Conference on Condition Monitoring and Diagnosis.
[11] D. Cox,et al. An Analysis of Transformations , 1964 .
[12] M.D. Judd,et al. A generic knowledge-based approach to the analysis of partial discharge data , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.
[13] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[14] Sergios Theodoridis,et al. Pattern Recognition , 1998, IEEE Trans. Neural Networks.
[15] J. F. Hauer,et al. Initial results in Prony analysis of power system response signals , 1990 .
[16] 田中 勝人. D. B. Percival and A. T. Walden: Wavelet Methods for Time Series Analysis, Camb. Ser. Stat. Probab. Math., 4, Cambridge Univ. Press, 2000年,xxvi + 594ページ. , 2009 .
[17] M. Priestley. Evolutionary Spectra and Non‐Stationary Processes , 1965 .
[18] Sergios Theodoridis,et al. Pattern Recognition, Fourth Edition , 2008 .
[19] A. Walden,et al. Wavelet Methods for Time Series Analysis , 2000 .
[20] M.D. Judd,et al. Partial discharge monitoring for power transformer using UHF sensors. Part 2: field experience , 2005, IEEE Electrical Insulation Magazine.
[21] Achim Zeileis,et al. BMC Bioinformatics BioMed Central Methodology article Conditional variable importance for random forests , 2008 .
[22] M.D. Judd,et al. Partial discharge monitoring of power transformers using UHF sensors. Part I: sensors and signal interpretation , 2005, IEEE Electrical Insulation Magazine.
[23] L. Scharf,et al. A Prony method for noisy data: Choosing the signal components and selecting the order in exponential signal models , 1984, Proceedings of the IEEE.
[24] R. Bartnikas,et al. Trends in partial discharge pattern classification: a survey , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.
[25] Edward R. Tufte,et al. Envisioning Information , 1990 .
[26] Mia Hubert,et al. Clustering in an object-oriented environment , 1997 .
[27] Ignacio Santamaria,et al. A COMPARATIVE STUDY OF HIGH-ACCURACY FREQUENCY ESTIMATION METHODS , 2000 .
[28] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[29] R. Kumaresan,et al. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .
[30] E. Gulski,et al. The use of fractal features for recognition of 3-D discharge patterns , 1995 .
[31] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[32] W. Cleveland,et al. The elements of graphing data , 1985 .
[33] Donald P. Percival,et al. On estimation of the wavelet variance , 1995 .
[34] E. Gulski. Computer-aided recognition of partial dicharges using statistical tools , 1991 .