Signal analysis and feature generation for pattern identification of partial discharges in high-voltage equipment

This paper proposes a method for the identification of different partial discharges (PDs) sources through the analysis of a collection of PD signals acquired with a PD measurement system. This method, robust and sensitive enough to cope with noisy data and external interferences, combines the characterization of each signal from the collection, with a clustering procedure, the CLARA algorithm. Several features are proposed for the characterization of the signals, being the wavelet variances, the frequency estimated with the Prony method, and the energy, the most relevant for the performance of the clustering procedure. The result of the unsupervised classification is a set of clusters each containing those signals which are more similar to each other than to those in other clusters. The analysis of the classification results permits both the identification of different PD sources and the discrimination between original PD signals, reflections, noise and external interferences. The methods and graphical tools detailed in this paper have been coded and published as a contributed package of the R environment under a GNU/GPL license.

[1]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[2]  Edward Rolf Tufte,et al.  The visual display of quantitative information , 1985 .

[3]  A. Krivda,et al.  Recognition of discharges: Discrimination and classification , 1995 .

[4]  Daniel J. Denis,et al.  The early origins and development of the scatterplot. , 2005, Journal of the history of the behavioral sciences.

[5]  E. Gulski,et al.  Computer-aided recognition of discharge sources , 1992 .

[6]  P. Fayers,et al.  The Visual Display of Quantitative Information , 1990 .

[7]  Adly Girgis,et al.  A Quantitative Study of Pitfalls in the FFT , 1980, IEEE Transactions on Aerospace and Electronic Systems.

[8]  Daniel B. Carr,et al.  Scatterplot matrix techniques for large N , 1986 .

[9]  L. Satish,et al.  Can fractal features be used for recognizing 3-d partial discharge patterns , 1995 .

[10]  M.D. Judd Radiometric partial discharge detection , 2008, 2008 International Conference on Condition Monitoring and Diagnosis.

[11]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[12]  M.D. Judd,et al.  A generic knowledge-based approach to the analysis of partial discharge data , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Sergios Theodoridis,et al.  Pattern Recognition , 1998, IEEE Trans. Neural Networks.

[15]  J. F. Hauer,et al.  Initial results in Prony analysis of power system response signals , 1990 .

[16]  田中 勝人 D. B. Percival and A. T. Walden: Wavelet Methods for Time Series Analysis, Camb. Ser. Stat. Probab. Math., 4, Cambridge Univ. Press, 2000年,xxvi + 594ページ. , 2009 .

[17]  M. Priestley Evolutionary Spectra and Non‐Stationary Processes , 1965 .

[18]  Sergios Theodoridis,et al.  Pattern Recognition, Fourth Edition , 2008 .

[19]  A. Walden,et al.  Wavelet Methods for Time Series Analysis , 2000 .

[20]  M.D. Judd,et al.  Partial discharge monitoring for power transformer using UHF sensors. Part 2: field experience , 2005, IEEE Electrical Insulation Magazine.

[21]  Achim Zeileis,et al.  BMC Bioinformatics BioMed Central Methodology article Conditional variable importance for random forests , 2008 .

[22]  M.D. Judd,et al.  Partial discharge monitoring of power transformers using UHF sensors. Part I: sensors and signal interpretation , 2005, IEEE Electrical Insulation Magazine.

[23]  L. Scharf,et al.  A Prony method for noisy data: Choosing the signal components and selecting the order in exponential signal models , 1984, Proceedings of the IEEE.

[24]  R. Bartnikas,et al.  Trends in partial discharge pattern classification: a survey , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[25]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[26]  Mia Hubert,et al.  Clustering in an object-oriented environment , 1997 .

[27]  Ignacio Santamaria,et al.  A COMPARATIVE STUDY OF HIGH-ACCURACY FREQUENCY ESTIMATION METHODS , 2000 .

[28]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[29]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[30]  E. Gulski,et al.  The use of fractal features for recognition of 3-D discharge patterns , 1995 .

[31]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[32]  W. Cleveland,et al.  The elements of graphing data , 1985 .

[33]  Donald P. Percival,et al.  On estimation of the wavelet variance , 1995 .

[34]  E. Gulski Computer-aided recognition of partial dicharges using statistical tools , 1991 .