Direct energy conversion of heat to electricity using AMTEC

Former renewable technologies, which did not prosper at that time due to engineering and material limitations, emerge once again, as in the case of the Alkali Metal Thermal to Electric Converter (AMTEC). This energy converter transforms heat to electricity through an electrochemical process at high temperature (700 - 1000 °C). At Karlsruhe Institute of Technology (KIT) an AMTEC test cell and an AMTEC TEst FAcility (ATEFA) have been designed and are under construction. The paper gives an overview of the history of AMTEC converter and its development; and presents the ATEFA facility included its latest progress in design and construction. In addition, a scoping study on the stability of PEEK polymer compound in liquid sodium environment was started and is reported.

[1]  R. Armstrong,et al.  The breakdown of β-alumina ceramic electrolyte , 1974 .

[2]  G. Tennenhouse,et al.  A Model for Degradation of Ceramic Electrolytes in Na‐S Batteries , 1975 .

[3]  L. C. Jonghe,et al.  Slow degradation and electron conduction in sodium/beta-aluminas , 1981 .

[4]  T. Cole,et al.  Thermoelectric Energy Conversion with Solid Electrolytes , 1983, Science.

[5]  P. Nicholson A supersaturation model for the degradation of sodium β/β″-aluminas , 1983 .

[6]  C. Bankston,et al.  Progress in AMTEC electrode experiments and modeling , 1988 .

[7]  J. L. Lamb,et al.  High Power Density Performance of WPt and WRh Electrodes in the Alkali Metal Thermoelectric Converter. , 1989 .

[8]  M. L. Underwood,et al.  A figure of merit for AMTEC electrodes , 1991 .

[9]  M. Ryan,et al.  Advances in high temperature components for AMTEC (Alkali Metal Thermal-to-Electric Converter) , 1991 .

[10]  V. Heinzel,et al.  Development of an Amtec, a Converter of Thermal to Electrical Energy , 1991 .

[11]  A. Negishi,et al.  Experimental and Design Study on Alkali Metal Thermoelectric Converter for Aerospace Power , 1991 .

[12]  V. Heinzel,et al.  Technological Tests with Respect to the Use of Beta Alumina in Alkali-Metal-Thermo-Electric Converters (AMTEC) , 1991 .

[13]  R. Knödler,et al.  Characterization of porous alkali-metal thermoelectric converter electrodes operating at 800 °C , 1992 .

[14]  K. Tsuchida,et al.  Characteristics of Ceramic Electrode for AMTEC , 1992 .

[15]  M.S. El-Genk,et al.  Vacuum testing of high efficiency multi-base tube AMTEC cells , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).

[16]  Akio Kato,et al.  LaB6 and TiB2 electrodes for the alkali metal thermoelectric converter , 1998 .

[17]  Mohamed S. El-Genk,et al.  Sodium vapor pressure losses in a multitube, alkali-metal thermal-to-electric converter , 1999 .

[18]  Mohamed S. El-Genk,et al.  Experimental Investigations, Modeling, and Analyses of High-Temperature Devices for Space Applications. Part 1 , 1999 .

[19]  M.A.K. Lodhi,et al.  An overview of advanced space/terrestrial power generation device: AMTEC , 2001 .

[20]  M.A.K. Lodhi,et al.  Simulation and analysis of time-dependent degradation behavior of AMTEC , 2001 .

[21]  T. K. Hunt,et al.  Fractional Watt AMTEC Converter , 2006 .

[22]  M.A.K. Lodhi,et al.  Temperature effect on lifetimes of AMTEC electrodes , 2007 .

[23]  M. Ryan,et al.  Developments in AMTEC Devices, Components and Performance , 2008 .

[24]  Robert Stieglitz,et al.  Application of liquid metals for solar energy systems , 2012 .

[25]  Ajit Kumar Senapati,et al.  Thermo-Electric Generator in Turbocharged Diesel Engine - A Review , 2014 .

[26]  R. Stieglitz,et al.  Direct energy conversion using liquid metals , 2014 .

[27]  A. Onea,et al.  AMTEC clusters for power generation in a concentrated solar power plant. , 2015 .