Distributed source coding of correlated memoryless Gaussian observations

We consider a distributed source coding problem of L correlated Gaussian observations Y<inf>i</inf>, i = 1, 2, …, L. We assume that the random vector Y<sup>L</sup> = <sup>t</sup>(Y<inf>1</inf>, Y<inf>2</inf>, …, Y<inf>L</inf>) is an observation of the Gaussian random vector X<sup>K</sup> = <sup>t</sup>(X<inf>1</inf>,X<inf>2</inf>, …, X<inf>K</inf>), having the form Y<sup>L</sup> = AX<sup>K</sup> + N<sup>L</sup>, where A is a L × K matrix and N<sup>L</sup> = <sup>t</sup>(N<inf>1</inf>, N<inf>2</inf>, …, N<inf>L</inf>) is a vector of L independent Gaussian random variables also independent of X<sup>K</sup>. We consider two distortion criterion based on the covariance matrix of the estimation error on X<sup>K</sup>. One is the criterion called the vector distortion criterion distortion region where each of the the diagonal elements of the covariance matrix is upper bounded by a prescribed level. The other is the criterion called the sum distortion criterion where the trace of the covariance matrix is upper bounded by a prescribed level. For each of the above two distortion criterion we derive explicit inner and outer bounds of the rate distortion region. We also derive an explicit matching condition in the case of the sum distortion criterion.

[1]  Robert M. Gray,et al.  Encoding of correlated observations , 1987, IEEE Trans. Inf. Theory.

[2]  Vinod M. Prabhakaran,et al.  Rate region of the quadratic Gaussian CEO problem , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[3]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[4]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[5]  Yasutada Oohama,et al.  The Rate-Distortion Function for the Quadratic Gaussian CEO Problem , 1998, IEEE Trans. Inf. Theory.

[6]  Yasutada Oohama,et al.  Rate-distortion theory for Gaussian multiterminal source coding systems with several side informations at the decoder , 2005, IEEE Transactions on Information Theory.

[7]  Venkat Anantharam,et al.  An improved outer bound for multiterminal source coding , 2008, IEEE Transactions on Information Theory.

[8]  Jun Chen,et al.  On the minimum sum rate of Gaussian multiterminal source coding: New proofs , 2009, 2009 IEEE International Symposium on Information Theory.

[9]  Zixiang Xiong,et al.  On general distributed source coding of correlated Gaussian remote sources , 2010, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[10]  Toby Berger,et al.  Multiterminal source encoding with one distortion criterion , 1989, IEEE Trans. Inf. Theory.

[11]  Hirosuke Yamamoto,et al.  Source Coding Theory for Multiterminal Communication Systems with a Remote Source , 1980 .

[12]  Gregory J. Pottie,et al.  Fidelity and Resource Sensitive Data Gathering , 2004 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Venkat Anantharam,et al.  An improved outer bound for the multiterminal source-coding problem , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[15]  Toby Berger,et al.  An upper bound on the rate distortion function for source coding with partial side information at the decoder , 1979, IEEE Trans. Inf. Theory.

[16]  Yasutada Oohama Distributed Source Coding of Correlated Gaussian Remote Sources , 2012, IEEE Trans. Inf. Theory.

[17]  Toby Berger,et al.  Rate-distortion for correlated sources with partially separated encoders , 1982, IEEE Trans. Inf. Theory.

[18]  Yasutada Oohama Gaussian multiterminal source coding , 1997, IEEE Trans. Inf. Theory.

[19]  Yasutada Oohama,et al.  Distributed Source Coding for Correlated Memoryless Gaussian Sources , 2009, ArXiv.

[20]  Y. Oohama Distributed source coding of correlated Gaussian observations , 2008, 2008 International Symposium on Information Theory and Its Applications.

[21]  Yasutada Oohama,et al.  Distributed Source Coding of Correlated Gaussian Remote Sources , 2008, IEEE Transactions on Information Theory.

[22]  Toby Berger,et al.  The quadratic Gaussian CEO problem , 1997, IEEE Trans. Inf. Theory.

[23]  Pramod Viswanath,et al.  Rate Region of the Quadratic Gaussian Two-Encoder Source-Coding Problem , 2005, IEEE Transactions on Information Theory.