Environmental assessment of incinerator residue utilisation.

Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suitable for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study, A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for two selected ash types, bottom ash from municipal solid waste incineration (MSWI) and wood fly ash. The MSWI bottom ash was assumed to be suitable for road construction or as drainage material in landfill, whereas the wood fly ash was assumed to be suitable for road construction or as a nutrient resource to be recycled on forest land after biofuel harvesting. Different types of potential environmental impact predominated in the activities of the system and the use of natural resources and the trace element leaching were identified as being relatively important for the scenarios compared. The scenarios differed in use of resources and energy, whereas there is a potential for trace element leaching regardless of how the material is managed. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill.

[1]  Klaus Kaiser,et al.  Dissolved organic matter sorption on sub soils and minerals studied by 13C‐NMR and DRIFT spectroscopy , 1997 .

[2]  Michael Kersten,et al.  Leaching behaviour and solubility — Controlling solid phases of heavy metals in municipal solid waste incinerator ash , 1996 .

[3]  Erik Kärrman,et al.  Environmental systems analysis of the use of bottom ash from incineration of municipal waste for road construction , 2006 .

[4]  Bert Allard,et al.  Analysis of Water Leachable Organic Components in Incineration Residues , 2000 .

[5]  Magnus Hallberg,et al.  Treatment conditions for the removal of contaminants from road runoff , 2007 .

[6]  Ruediger Kuehr,et al.  Strategic sustainable development — selection, design and synergies of applied tools , 2002 .

[7]  J. E. Krzanowski,et al.  Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate , 2000 .

[8]  E. Tipping,et al.  Cation binding by humic substances: Cation–humic binding and other physico-chemical processes , 2002 .

[9]  J. Davis,et al.  Life cycle inventory (LCI) of fertiliser production. Fertiliser products used in Sweden and Western Europe , 1999 .

[10]  Dan Berggren Kleja,et al.  Acid-base and copper-binding properties of three organic matter fractions isolated from a forest floor soil solution. , 2010 .

[11]  Jon Petter Gustafsson,et al.  Cation binding in a mor layer: batch experiments and modelling , 2003 .

[12]  Paul H. Brunner,et al.  Total organic carbon emissions from municipal incinerators , 1987 .

[13]  T B Edil,et al.  Life cycle based risk assessment of recycled materials in roadway construction. , 2007, Waste management.

[14]  Stefano Ferrari,et al.  Chemical speciation of carbon in municipal solid waste incinerator residues. , 2002, Waste management.

[15]  T. Taylor Eighmy,et al.  Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum , 2002 .

[16]  David S. Kosson,et al.  Developments in the characterisation of waste materials for environmental impact assessment purposes , 2006 .

[17]  C Ribbing,et al.  Environmentally friendly use of non-coal ashes in Sweden. , 2007, Waste management.

[18]  Roland Hischier,et al.  ecoinvent : Services Waste Treatment and Assessment of Long-Term Emissions , 2005 .

[19]  E. Kärrman,et al.  Environmental systems analysis of four on-site wastewater treatment options , 2008 .

[20]  P Eskola,et al.  Life-cycle impacts of the use of industrial by-products in road and earth construction. , 2001, Waste management.

[21]  Göran Finnveden Solid waste treatment within the framework of life cycle assessment , 1996 .

[22]  Gordana Petkovic,et al.  Environmental impact from the use of recycled materials in road construction: method for decision-making in Norway , 2004 .

[23]  Hans-Jürgen Dr. Klüppel,et al.  The Revision of ISO Standards 14040-3 - ISO 14040: Environmental management – Life cycle assessment – Principles and framework - ISO 14044: Environmental management – Life cycle assessment – Requirements and guidelines , 2005 .

[24]  Masahiro Osako,et al.  Utilizing a database to interpret leaching characteristics of lead from bottom ashes of municipal solid waste incinerators. , 2005, Waste management.

[25]  Andrew Kilpatrick,et al.  Of Permanent Value: The Story of Warren Buffett , 1994 .

[26]  C Vandecasteele,et al.  Influence of treatment techniques on Cu leaching and different organic fractions in MSWI bottom ash leachate. , 2007, Waste management.

[27]  Walter Klöpffer,et al.  Analytical tools for environmental design and management in a systems perspective , 2012 .

[28]  Rob N.J. Comans,et al.  Geochemical modeling of weathering reactions in municipal solid waste incinerator bottom ash , 1997 .

[29]  M. Huijbregts,et al.  Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA. , 2000, Chemosphere.

[30]  C Vandecasteele,et al.  Carbonation of MSWI-bottom ash to decrease heavy metal leaching, in view of recycling. , 2005, Waste management.

[31]  am Fallman,et al.  LEACHING FROM SLAGS AND ASHES IN LYSIMETERS , 2001 .

[32]  J. Meima,et al.  Application of Surface Complexation/Precipitation Modeling to Contaminant Leaching from Weathered Municipal Solid Waste Incinerator Bottom Ash , 1998 .

[33]  Kuen-Sheng Wang,et al.  The recycling of MSW incinerator bottom ash by sintering , 2003, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[34]  A. Tillman,et al.  Life cycle assessment of municipal waste water systems , 1998 .

[35]  S. Åsbrink,et al.  CuO: X-ray single-crystal structure determination at 196 K and room temperature , 1991 .

[36]  E. Tipping Humic Ion-Binding Model VI: An Improved Description of the Interactions of Protons and Metal Ions with Humic Substances , 1998 .

[37]  J. Meima,et al.  The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering , 1999 .

[38]  Eric Forssberg,et al.  The potential leachability from natural road construction materials , 1999 .

[39]  Andrea Somogyi,et al.  Direct determination of cadmium speciation in municipal solid waste fly ashes by synchrotron radiation induced mu-X-ray fluorescence and mu-X-ray absorption spectroscopy. , 2002, Environmental science & technology.

[40]  Reinhard Niessner,et al.  Morphological and Chemical Characterization of Calcium-Hydrate Phases Formed in Alteration Processes of Deposited Municipal Solid Waste Incinerator Bottom Ash , 2000 .

[41]  Heike Knicker,et al.  Contributions of Oi, Oe and Oa horizons to dissolved organic matter in forest floor leachates , 2003 .

[42]  Stefano Ferrari Chemische Charakterisierung des Kohlenstoffes in Rückständen von Müllverbrennungsanlagen , 1997 .

[43]  Maria Arm,et al.  Mechanical Properties of Residues as Unbound Road Materials - experimental tests on MSWI bottom ash, crushed concrete and blast furnace slag , 2003 .

[44]  Thomas H Christensen,et al.  Thermal Treatment of Stabilized Air Pollution Control Residues in a Waste Incinerator Pilot Plant. Part 1: Fate of Elements and Dioxins , 2004, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[45]  H. Belevi,et al.  Factors Determining the Element Behavior in Municipal Solid Waste Incinerators. 2. Laboratory Experiments , 2000 .

[46]  Joris J. Dijkstra,et al.  REVISION OF THE DUTCH BUILDING MATERIALS DECREE: ALTERNATIVE EMISSION LIMIT VALUES FOR INORGANIC COMPONENTS IN GRANULAR BUILDING MATERIALS , 2008 .

[47]  Holger Ecke,et al.  Mobility of organic carbon from incineration residues. , 2008, Waste management.

[48]  R. Comans,et al.  A consistent geochemical modelling approach for the leaching and reactive transport of major and trace elements in MSWI bottom ash , 2008 .

[49]  Jon Petter Gustafsson,et al.  Modeling the Acid-Base Properties and Metal Complexation of Humic Substances with the Stockholm Humic Model , 2001 .

[50]  G. Assefa Environmental Systems Analysis of Waste Management , 2000 .

[51]  Hans Petersson,et al.  Sweden's National Inventory Report 2004 - Submitted under the United Nations Framework Convention on Climate Change , 2004 .

[52]  Thomas Højlund Christensen,et al.  Måling af tungmetaller i dansk dagrenovation og småt brændbart , 2006 .

[53]  Henrikke Baumann,et al.  The hitch hiker's guide to LCA : an orientation in life cycle assessment methodology and application , 2004 .

[54]  Thomas Højlund Christensen,et al.  High temperature co-treatment of bottom ash and stabilized fly ashes from waste incineration. , 2001 .

[55]  C Vandecasteele,et al.  Accelerated carbonation for treatment of MSWI bottom ash. , 2006, Journal of hazardous materials.

[56]  Kuen-Sheng Wang,et al.  The characteristics study on sintering of municipal solid waste incinerator ashes , 1998 .

[57]  Jurate Kumpiene,et al.  Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incineration (MSWI). , 2006, The Science of the total environment.

[58]  G. Dóka,et al.  Waste Treatment and Assessment of Long-Term Emissions (8pp) , 2005 .

[59]  Thomas H. Christensen,et al.  Thermal Treatment of Stabilized Air Pollution Control Residues in a Waste Incinerator Pilot Plant. Part 2: Leaching Characteristics of Bottom Ashes , 2004, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[60]  Lennart Olsson,et al.  Categorising tools for sustainability assessment , 2007 .

[61]  Masahiro Osako,et al.  Investigation on the humification of municipal solid waste incineration residue and its effect on the leaching behavior of dioxins. , 2004, Waste management.

[62]  Maria Izquierdo,et al.  Characterisation of bottom ash from municipal solid waste incineration in Catalonia , 2002 .

[63]  T. Taylor Eighmy,et al.  Aging reactions in residues , 1999 .

[64]  Ole Hjelmar,et al.  Disposal strategies for municipal solid waste incineration residues , 1996 .

[65]  David N. Hume,et al.  Chloride interference in cupric ion selective electrode measurements , 1979 .

[66]  John E. Bingham,et al.  A handbook of systems analysis , 1972 .

[67]  P Piantone,et al.  Weathering of a MSW bottom ash heap: a modelling approach. , 2002, Waste management.

[68]  Klaus Kaiser,et al.  Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry. , 2002, Water research.

[69]  David S. Kosson,et al.  An Integrated Framework for Evaluating Leaching in Waste Management and Utilization of Secondary Materials , 2002 .

[70]  S Lidelöw,et al.  Evaluation of leachate emissions from crushed rock and municipal solid waste incineration bottom ash used in road construction. , 2007, Waste management.

[71]  A. Fällman,et al.  Leaching tests for environmental assessment of inorganic substances in wastes, Sweden , 1996 .

[72]  A. Tollan,et al.  Putting Gentle Pressure on Parties: Recent Trends in the Practice of the Implementation Committee under the Convention on Long-range Transboundary Air Pollution , 1985, Nordic Cosmopolitanism.

[73]  Göran Finnveden,et al.  Best available practice regarding impact categories and category indicators in life cycle impact assessment , 1999 .

[74]  H. A. van der Sloot,et al.  Characteristics, treatment and utilization of residues from municipal waste incineration. , 2001, Waste management.

[75]  Göran Finnveden,et al.  Life cycle assessment of energy from solid waste—part 1: general methodology and results , 2005 .

[76]  Jiri Hyks,et al.  Leaching from municipal solid waste incineration residues , 2008 .

[77]  D. Kinniburgh,et al.  Metal ion binding to humic substances: application of the non-ideal competitive adsorption model. , 1995, Environmental science & technology.

[78]  Jan Mulder,et al.  Concentration and Fluxes of Dissolved Organic Carbon (DOC) in Three Norway Spruce Stands along a Climatic Gradient in Sweden , 2006 .

[79]  Brian W. Baetz,et al.  LYSIMETER WASHING OF MSW INCINERATOR BOTTOM ASH , 1995 .

[80]  J. Leenheer,et al.  Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. , 1981, Environmental science & technology.

[81]  P. Paquin,et al.  Biotic ligand model of the acute toxicity of metals. 1. Technical Basis , 2001, Environmental toxicology and chemistry.

[82]  Tomas Ekvall,et al.  System boundaries and input data in consequential life cycle inventory analysis , 2004 .

[83]  Göran Finnveden,et al.  Long-term emissions from landfills should not be disregarded , 1999 .

[84]  Anna Björklund,et al.  Evaluating a municipal waste management plan using orware , 1999 .

[85]  Erik Kärrman,et al.  Tas beslut om askanvändning på rätt grunder , 2008 .

[86]  Bernard Legube,et al.  Distribution and characterization of dissolved organic matter of surface waters , 1997 .

[87]  Gaëlle Ducom,et al.  Influence of waste input and combustion technology on MSWI bottom ash quality. , 2007, Waste management.

[88]  Pentti Lahtinen,et al.  Fly ash mixtures as flexible structural materials for low-volume roads , 2001 .

[89]  K Nishida,et al.  Melting and stone production using MSW incinerated ash. , 2001, Waste management.

[90]  Ivars Neretnieks,et al.  Serial Batch Tests Performed On Municipal Solid Waste Incineration Bottom Ash and Electric Arc Furnace Slag, in Combination With Computer Modelling , 1997 .

[91]  Shin-ichi Sakai,et al.  Municipal solid waste incinerator residue recycling by thermal processes , 2000 .

[92]  Broekman Mh,et al.  Environmental quality of primary and secundary construction materials in relation to re-use and protection of soil and surface water , 1996 .

[93]  Anne-Marie Tillman,et al.  Significance of decision-making for LCA methodology , 2000 .

[94]  Alex Avdeef,et al.  Calibration of copper ion selective electrode response to pCu 19 , 1983 .

[95]  Mats Eklund,et al.  Environmental evaluation of reuse of by-products as road construction materials in Sweden. , 2003, Waste management.

[96]  R. Comans,et al.  Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash. , 2004, Environmental science & technology.

[97]  K. Hungerbühler,et al.  Time-dependent life-cycle assessment of slag landfills with the help of scenario analysis: the example of Cd and Cu , 2005 .

[98]  David G. Kinniburgh,et al.  ION BINDING TO NATURAL ORGANIC MATTER : COMPETITION, HETEROGENEITY, STOICHIOMETRY AND THERMODYNAMIC CONSISTENCY , 1999 .

[99]  Inger Johansson Characterisation of organic materials from incineration residues , 2003 .

[100]  E. Perdue,et al.  Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter , 2003 .

[101]  Britt-Marie Steenari,et al.  Assessment of metal mobility in MSW incineration ashes using water as the reagent , 2007 .

[102]  Göran Finnveden On the possibilities of life-cycle assessment : development of methodology and review of case studies , 1998 .

[103]  Michael Kersten,et al.  Speciation of trace metals in leachate from a MSWI bottom ash landfill , 1997 .

[104]  H Stripple,et al.  LIFE CYCLE ASSESSMENT OF ROAD: A PILOT STUDY FOR INVENTORY ANALYSIS. SECOND REVISED EDITION , 2001 .

[105]  Peter Baccini,et al.  Chemical behaviour of municipal solid waste incinerator bottom ash in monofills , 1992 .

[106]  Göran Finnveden,et al.  SETAC-Europe: Second working group on LCIA (WIA-2): Best available practice regarding impact categories and category indicators in life cycle impact assessment: Background document for the second working group on life cycle impact assessment of SETAC-Europe (WIA-2) , 1999 .

[107]  H. Allen,et al.  Characterization of copper complexation with natural dissolved organic matter (DOM)--link to acidic moieties of DOM and competition by Ca and Mg. , 2002, Water research.

[108]  Pernilla Gluch Building Green - Perspectives on Environmental Mangagement in Construction , 2005 .

[109]  M. Hauschild,et al.  Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model. , 2007, Waste management.

[110]  Peter Baccini,et al.  Optimizing municipal solid waste combustion through organic and elemental carbon as indicators. , 2003, Environmental science & technology.

[111]  Bo Svedberg,et al.  Förutsättningar för att askor kommer till användning i vägar , 2004 .

[112]  Anne-Marie Tillman,et al.  Miljön och förpackningarna. Livscykelanalyser för förpackningsmaterial - beräkning av miljöbelastning , 1991 .

[113]  J. Meima,et al.  Complexation of Cu with Dissolved Organic Carbon in Municipal Solid Waste Incinerator Bottom Ash Leachates , 1999 .

[114]  J. A. Lenheer,et al.  Classification of organic solutes in water by using macroreticular resin , 1976 .

[115]  Ulla-Maija Mroueh,et al.  LIFE CYCLE ASSESSMENT OF ROAD CONSTRUCTION. , 2000 .

[116]  Liselott Roth,et al.  Reuse of construction materials: Environmental performance and assessment methodology , 2005 .

[117]  T H Christensen,et al.  High temperature co-treatment of bottom ash and stabilized fly ashes from waste incineration. , 2001, Waste management.

[118]  Mark B. David,et al.  Chemical characteristics and acidity of soluble organic substances from a northern hardwood forest floor, central Maine, USA , 1991 .

[119]  M. Grenier-loustalot,et al.  Municipal solid waste incineration bottom ash: Physicochemical characterization of organic matter , 1999 .

[120]  Susanna Olsson,et al.  Skogsbränsleaska som näringsresurs eller konstruktionsmaterial –Miljöeffekter av olika handlingsalternativ , 2008 .

[121]  J. M. Chimenos,et al.  Characterization of the bottom ash in municipal solid waste incinerator , 1999 .

[122]  Jenny Norrman,et al.  Energiaska som vägbyggnadsmaterial - utlakning och miljöbelastning från en provväg , 2005 .

[123]  B. Bergbäck,et al.  Urban Metal Flows – A Case Study of Stockholm. Review and Conclusions , 2001 .

[124]  Erik Kärrman,et al.  Miljösystemanalys för nyttiggörande av askor i anläggningsbyggande , 2006 .

[125]  Christian Maurice,et al.  Pilotförsök med flygaskastabiliserat avloppsslam (FSA) som tätskikt , 2005 .

[126]  Stefanie Hellweg,et al.  Modeling Waste Incineration for Life-Cycle Inventory Analysis in Switzerland , 2001 .

[127]  D. Helsel More than obvious: better methods for interpreting nondetect data. , 2005, Environmental science & technology.

[128]  H. A. van der Sloot,et al.  Process identification and model development of contaminant transport in MSWI bottom ash. , 2002, Waste management.

[129]  H. Belevi,et al.  Factors Determining the Element Behavior in Municipal Solid Waste Incinerators. 1. Field Studies , 2000 .

[130]  O Lindqvist,et al.  A study of Cr(VI) in ashes from fluidized bed combustion of municipal solid waste: leaching, secondary reactions and the applicability of some speciation methods. , 2001, Waste management.

[131]  C. Seguí,et al.  Characterization of bottom ash in municipal solid waste incinerators for its use in road base. , 2004, Waste management.

[132]  J.J.J.M Goumans,et al.  Environmental Aspects Of Construction With Waste Materials , 1994 .

[133]  Göran Finnveden,et al.  Environmental systems analysis tools – an overview , 2005 .

[134]  Rob N.J. Comans,et al.  Reduction of contaminant leaching from MSWI bottom ash by addition of sorbing components , 2000 .

[135]  O. Hjelmar,et al.  Municipal Solid Waste Incinerator Residues , 1997 .

[136]  Gerhard Furrer,et al.  Influence of biodegradation processes on the duration of CaCO3 as a pH buffer in municipal solid waste incinerator bottom ash. , 2002, Environmental science & technology.

[137]  D. Kinniburgh,et al.  Generic NICA-Donnan model parameters for proton binding by humic substances. , 2001, Environmental science & technology.

[138]  Eva Heiskanen,et al.  Managers' interpretations of LCA: enlightenment and responsibility or confusion and denial? , 2000 .

[139]  Ming-Lung Hung,et al.  A novel sustainable decision making model for municipal solid waste management. , 2007, Waste management.

[140]  Jan-Olov Sundqvist Life cycles assessments and solid waste - Guidelines for solid waste treatment and disposal in LCA , 1999 .

[141]  T. Astrup,et al.  Assessment of long-term leaching from waste incineration air-pollution-control residues. , 2006, Waste management.

[142]  D. Kinniburgh,et al.  Generic NICA-Donnan model parameters for metal-ion binding by humic substances. , 2001, Environmental science & technology.

[143]  Annica Carlsson,et al.  Flow Accounts and Policy : Data for Sweden 2004 , 2006 .

[144]  Stefan Salhofer,et al.  Landfill modelling in LCA - a contribution based on empirical data. , 2007, Waste management.

[145]  Susanna Olsson,et al.  Environmental assessment of municipal solid waste incinerator bottom ash in road constructions , 2005 .

[146]  J. Hartlén,et al.  Leaching of slags and ashes - controlling factors in field experiments versus in laboratory tests , 1994 .

[147]  Åsa Moberg,et al.  Environmental systems analysis tools for decision-making LCA and Swedish waste management as an example , 2006 .

[148]  Carlton C. Wiles,et al.  Municipal Solid Waste Combustion Ash: State-of-the-Knowledge , 1996, Municipal Solid Wastes.