Practical Applied Mathematics Modelling, Analysis, Approximation

Part I. Modelling Techniques: 1. The basics of modelling 2. Units, dimensions and dimensional analysis 3. Non-dimensionalisation 4. Case studies: hair modelling and cable laying 5. Case study: the thermistor (1) 6. Case study: electrostatic painting (1) Part II. Mathematical Techniques: 7. Partial differential equations 8. Case study: traffic modelling 9. Distributions 10. Theory of distributions 11. Case study: the pantograph Part III. Asymptotic techniques: 12. Asymptotic expansions 13. Regular perturbation expansions 14. Case study: electrostatic painting (2) 15. Case study: piano tuning 16. Boundary layers 17. Case study: the thermistor (2) 18. 'Lubrication theory' analysis 19. Case study: continuous casting of steel 20. Lubrication theory for fluids 21. Case study: eggs 22. Methods for oscillators 23. Ray theory and other 'exponential' approaches.

[1]  G. Taylor The formation of a blast wave by a very intense explosion I. Theoretical discussion , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  H. Weitzner,et al.  Perturbation Methods in Applied Mathematics , 1969 .

[3]  D. W. Jordan,et al.  Nonlinear ordinary differential equations : an introduction to dynamical systems , 1999 .

[4]  S. Jonathan Chapman,et al.  On the Theory of Complex Rays , 1999, SIAM Rev..

[5]  Paul Wilmott,et al.  On a mathematical model for fiber tapering , 1989 .

[6]  Ian A. Frigaard,et al.  Spraying the Perfect Billet , 1997, SIAM J. Appl. Math..

[7]  Andrew C. Fowler,et al.  Mathematical Models in the Applied Sciences , 1997 .

[8]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[9]  S. Schwerman,et al.  The Physics of Musical Instruments , 1991 .

[10]  Carl E. Pearson,et al.  Functions of a complex variable - theory and technique , 2005 .

[11]  Thomas A. McMahon,et al.  Muscles, Reflexes, and Locomotion , 1984 .

[12]  L. Peletier,et al.  Spatial Patterns: Higher Order Models in Physics and Mechanics , 2001 .

[13]  Ehrhard Behrends,et al.  Music and mathematics , 2006 .

[14]  T A McMahon,et al.  Rowing: A Similarity Analysis , 1971, Science.

[15]  John Ockendon,et al.  The dynamics of a current collection system for an electric locomotive , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  G. I. Barenblatt Scaling: Self-similarity and intermediate asymptotics , 1996 .

[17]  Frank W. J. Olver,et al.  Introduction to Asymptotics and Special Functions , 1974 .

[18]  Ian A. Frigaard,et al.  Temperature surges in current-limiting circuit devices , 1992 .

[19]  D. Helbing Traffic and related self-driven many-particle systems , 2000, cond-mat/0012229.

[20]  J. Keener Principles of Applied Mathematics , 2019 .

[21]  P. D. Howell,et al.  Models for thin viscous sheets , 1996, European Journal of Applied Mathematics.

[22]  S. Lang,et al.  An Introduction to Fourier Analysis and Generalised Functions , 1959 .

[23]  Murray S. Klamkin Mathematical Modelling: Classroom Notes in Applied Mathematics , 1987 .

[24]  Neil Gershenfeld,et al.  The nature of mathematical modeling , 1998 .

[25]  D. Acheson Elementary Fluid Dynamics , 1990 .