Generalized Tikhonov regularization

[1]  Bernd Hofmann,et al.  How general are general source conditions? , 2008 .

[2]  Jizheng Di Fundamentals of Wavelets , 2012 .

[3]  Thorsten Hohage,et al.  Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data , 2011, Numerische Mathematik.

[4]  Otmar Scherzer,et al.  Variational Methods in Imaging , 2008, Applied mathematical sciences.

[5]  E. Rametsteiner,et al.  Austria , 1980, The Lancet.

[6]  BUI TRONG,et al.  THE NORMALIZED DUALITY MAPPING AND TWO RELATED CHARACTERISTIC PROPERTIES OF A UNIFORMLY CONVEX BANACH SPACE , 2008 .

[7]  K. Kunisch,et al.  Convergence of Tikhonov regularization for constrained ill-posed inverse problems , 1994 .

[8]  Bert Fristedt,et al.  A modern approach to probability theory , 1996 .

[9]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[10]  Radu Ioan Bot,et al.  Regularity Conditions via Quasi-Relative Interior in Convex Programming , 2008, SIAM J. Optim..

[11]  Johnathan M. Bardsley,et al.  An efficient computational method for total variation-penalized Poisson likelihood estimation , 2008 .

[12]  B. Hofmann,et al.  Convergence rates for the iteratively regularized Gauss–Newton method in Banach spaces , 2010 .

[13]  On the analysis of distance functions for linear ill-posed problems with an application to the integration operator in L 2 , 2007 .

[14]  Jens Flemming,et al.  Solution smoothness of ill-posed equations in Hilbert spaces: four concepts and their cross connections , 2012 .

[15]  Andreas Neubauer,et al.  On enhanced convergence rates for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces , 2009 .

[16]  Thorsten Hohage,et al.  Logarithmic convergence rates of the iteratively regularized Gauss - Newton method for an inverse potential and an inverse scattering problem , 1997 .

[17]  Charles L. Epstein,et al.  Introduction to the mathematics of medical imaging , 2003 .

[18]  Jens Flemming,et al.  Theory and examples of variational regularization with non-metric fitting functionals , 2010 .

[19]  M. Bertero,et al.  Efficient gradient projection methods for edge-preserving removal of Poisson noise , 2009 .

[20]  H. Piaggio Mathematical Analysis , 1955, Nature.

[21]  R. Anderssen,et al.  Joint additive Kullback–Leibler residual minimization and regularization for linear inverse problems , 2007 .

[22]  Andreas Neubauer,et al.  Tikhonov-regularization of ill-posed linear operator equations on closed convex sets , 1988 .

[23]  Torsten Hein,et al.  Tikhonov regularization in Banach spaces—improved convergence rates results , 2009 .

[24]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[25]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[26]  Radu Ioan Bot,et al.  An extension of the variational inequality approach for nonlinear ill-posed problems , 2009 .

[27]  Jens Flemming,et al.  Sharp converse results for the regularization error using distance functions , 2011 .

[28]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[29]  K. Bredies,et al.  Linear Convergence of Iterative Soft-Thresholding , 2007, 0709.1598.

[30]  P. Mathé,et al.  Discretization strategy for linear ill-posed problems in variable Hilbert scales , 2003 .

[31]  J. Coyle Inverse Problems , 2004 .

[32]  Andreas Neubauer,et al.  On Converse and Saturation Results for Tikhonov Regularization of Linear Ill-Posed Problems , 1997 .

[33]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[34]  H. Selbmann,et al.  Learning to recognize objects , 1999, Trends in Cognitive Sciences.

[35]  S. Osher,et al.  Convergence rates of convex variational regularization , 2004 .

[36]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[37]  S. Paddock,et al.  Confocal laser scanning microscopy. , 1999, BioTechniques.

[38]  Gustavo L. Gilardoni On Pinsker's and Vajda's Type Inequalities for Csiszár's $f$ -Divergences , 2006, IEEE Transactions on Information Theory.

[39]  P. Mathé,et al.  Geometry of linear ill-posed problems in variable Hilbert scales Inverse Problems 19 789-803 , 2003 .

[40]  Markus Grasmair,et al.  Non-convex sparse regularisation , 2010 .

[41]  Jens Flemming,et al.  A New Approach to Source Conditions in Regularization with General Residual Term , 2009 .

[42]  A. Neubauer,et al.  Improved and extended results for enhanced convergence rates of Tikhonov regularization in Banach spaces , 2010 .

[43]  Thorsten Hohage,et al.  Regularization of exponentially ill-posed problems , 2000 .

[44]  A. Gundel Robust utility maximization, f-projections, and risk constraints , 2006 .

[45]  O. Scherzer,et al.  A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators , 2007 .

[46]  Ronny Ramlau,et al.  Convergence rates for Morozov's discrepancy principle using variational inequalities , 2011 .

[47]  Convergence rates for regularization of ill-posed problems in Banach spaces by approximate source conditions , 2008 .

[48]  K. Bredies,et al.  Regularization with non-convex separable constraints , 2009 .

[49]  B. Hofmann Approximate source conditions in Tikhonov–Phillips regularization and consequences for inverse problems with multiplication operators , 2006 .

[50]  E. Zeidler Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .

[51]  Heinrich von Weizsäcker,et al.  Regularization in Hilbert space under unbounded operators and general source conditions , 2009 .

[52]  L. Zanni,et al.  A scaled gradient projection method for constrained image deblurring , 2008 .

[53]  Bernd Hofmann,et al.  On maximum entropy regularization for a specific inverse problem of option pricing , 2005 .

[54]  Barbara Kaltenbacher,et al.  Iterative Regularization Methods for Nonlinear Ill-Posed Problems , 2008, Radon Series on Computational and Applied Mathematics.

[55]  Bernd Hofmann,et al.  On the interplay of source conditions and variational inequalities for nonlinear ill-posed problems , 2010 .

[56]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[57]  Mohamed-Jalal Fadili,et al.  Image Decomposition and Separation Using Sparse Representations: An Overview , 2010, Proceedings of the IEEE.

[58]  Bangti Jin,et al.  Iterative parameter choice by discrepancy principle , 2012 .

[59]  O. Scherzer,et al.  Discretization of variational regularization in Banach spaces , 2010, 1004.2838.

[60]  Bernd Hofmann,et al.  Analysis of Profile Functions for General Linear Regularization Methods , 2007, SIAM J. Numer. Anal..

[61]  Umberto Amato,et al.  Maximum entropy regularization of Fredholm integral equations of the first kind , 1991 .

[62]  Steve B. Howell,et al.  Handbook of CCD Astronomy , 2000 .

[63]  Otmar Scherzer,et al.  The residual method for regularizing ill-posed problems , 2009, Appl. Math. Comput..

[64]  A. Tikhonov,et al.  Nonlinear Ill-Posed Problems , 1997 .

[65]  Kazufumi Ito,et al.  A Regularization Parameter for Nonsmooth Tikhonov Regularization , 2011, SIAM J. Sci. Comput..

[66]  E. Resmerita Regularization of ill-posed problems in Banach spaces: convergence rates , 2005 .

[67]  F. Cammaroto,et al.  Separation Theorem Based on the Quasirelative Interior and Application to Duality Theory , 2005 .

[68]  Jens Flemming,et al.  Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities , 2011 .

[69]  Bernd Hofmann,et al.  Approximate source conditions for nonlinear ill-posed problems—chances and limitations , 2009 .

[70]  Thomas Bonesky Morozov's discrepancy principle and Tikhonov-type functionals , 2008 .

[71]  D. Prowe Berlin , 1855, Journal of public health, and sanitary review.

[72]  M. Grasmair Generalized Bregman distances and convergence rates for non-convex regularization methods , 2010 .