Coexistence of pico- and femto-cellular LTE-unlicensed with legacy indoor Wi-Fi deployments

Due to the high expected increase in mobile data traffic and the scarcity of licensed spectrum for cellular networks, 3GPP has started preliminary work for standardizing LTE operation in the 5 GHz unlicensed band (LTE-U). However, LTE-U would interfere with other legacy technologies operating in the unlicensed band, the most important being contention-based Wi-Fi, which would be blocked by conventional LTE, which is designed for dedicated licensed spectrum. Consequently, some coexistence-enabling mechanisms have been proposed for LTE-U, but their evaluation is still at an early stage. In this paper we present a detailed system-level study on the downlink throughput performance of legacy indoor IEEE 802.11n and LTE-U deployments coexisting in the 5 GHz band. We consider several LTE-U coexistence mechanisms (i.e. listen-before-talk and interference-aware channel selection) in indoor LTE-U femtocell and outdoor LTE-U picocell scenarios with a realistic range of network densities and real outdoor picocell locations. We also study coexistence of LTE-U networks deployed by multiple operators, and evaluate the impact of different LTE-U transmit power levels. Our results show that in general both Wi-Fi and LTE-U benefit from the large number of available channels and isolation provided by building shielding at 5 GHz. Additionally, in typical indoor coexistence scenarios, interference-aware channel selection is more efficient for both Wi-Fi and LTE-U than listen-before-talk mechanisms. For outdoor LTE-U picocells and indoor Wi-Fi deployments, the two networks are isolated from each other, but listen-before-talk can increase LTE-U user throughput when multiple outdoor LTE-U networks deployed by different cellular operators coexist.

[1]  Abhijeet Bhorkar,et al.  Performance analysis of LTE and Wi-Fi in unlicensed band using stochastic geometry , 2014, 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC).

[2]  Sayantan Choudhury,et al.  Performance Evaluation of LTE and Wi-Fi Coexistence in Unlicensed Bands , 2013, 2013 IEEE 77th Vehicular Technology Conference (VTC Spring).

[3]  François Baccelli,et al.  A Stochastic Geometry Analysis of Dense IEEE 802.11 Networks , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[4]  Yimin Pang,et al.  On the Impact of LTE-U on Wi-Fi Performance , 2014, 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC).

[5]  I. Forkel,et al.  A multi-wall-and-floor model for indoor radio propagation , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[6]  PROPAGATION DATA AND PREDICTION METHODS FOR THE PLANNING OF INDOOR RADIOCOMMUNICATION SYSTEMS AND RADIO LOCAL AREA NETWORKS IN THE FREQUENCY RANGE 900 MHz TO 100 GHz , 1997 .

[7]  Sayantan Choudhury,et al.  Enabling LTE/WiFi coexistence by LTE blank subframe allocation , 2013, 2013 IEEE International Conference on Communications (ICC).

[8]  Mikko A. Uusitalo,et al.  System performance of LTE and IEEE 802.11 coexisting on a shared frequency band , 2013, 2013 IEEE Wireless Communications and Networking Conference (WCNC).

[9]  Marina Petrova,et al.  Wi-Fi, but not on Steroids: Performance analysis of a Wi-Fi-like Network operating in TVWS under realistic conditions , 2012, 2012 IEEE International Conference on Communications (ICC).

[10]  Sayantan Choudhury,et al.  Enabling the coexistence of LTE and Wi-Fi in unlicensed bands , 2014, IEEE Communications Magazine.

[11]  3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (e-utra); Further Advancements for E-utra Physical Layer Aspects (release 9) , 2022 .

[12]  Andreas Achtzehn,et al.  Survey of IEEE 802.11 Wi-Fi deployments for deriving the spatial structure of opportunistic networks , 2013, 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).