Human Brain Regions Involved in Heading Estimation

Observer motion in a stationary visual environment results in an optic flow pattern on the retina, which in simple situations can be used to determine the direction of self motion or heading. The present study, using positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), investigated the human cerebral activation pattern, elicited when subjects viewing a ground plane optic flow pattern actively judged heading. Several successive experiments controlled for visual input, visuospatial attention, and motor response effects. Results indicate that the network specifically involved in heading consists of only two motion sensitive areas: human MT/V5+, including an inferior satellite, and dorsal intraparietal sulcus area (DIPSM/L), predominantly in the right hemisphere, plus a dorsal premotor region bilaterally. These results suggest possible homologies with the dorsal part of the medial superior temporal area and area 7a in the monkey.

[1]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[3]  J. H. Gao,et al.  Visual spatial attention: Integration of PET and ERP data , 1996, NeuroImage.

[4]  Guy A. Orban,et al.  Areas involved in extracting structure from motion: an fMRI study in the awake fixating monkey , 2000 .

[5]  T. L. Harrington,et al.  Neural mechanisms of space vision in the parietal association cortex of the monkey , 1985, Vision Research.

[6]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  H. Read,et al.  Construction and Representation of Visual Space in the Inferior Parietal Lobule , 1997 .

[9]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[10]  M. Graziano,et al.  Tuning of MST neurons to spiral motions , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[12]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[13]  G. Orban,et al.  Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. , 1994, Journal of neurophysiology.

[14]  R. Wurtz,et al.  Medial Superior Temporal Area Neurons Respond to Speed Patterns in Optic Flow , 1997, The Journal of Neuroscience.

[15]  R. Andersen,et al.  Mechanisms of Heading Perception in Primate Visual Cortex , 1996, Science.

[16]  R. M. Siegel,et al.  Analysis of optic flow in the monkey parietal area 7a. , 1997, Cerebral cortex.

[17]  S. Zeki,et al.  Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. , 1971, Brain research.

[18]  G. Orban,et al.  Motion-responsive regions of the human brain , 1999, Experimental Brain Research.

[19]  M. Corbetta,et al.  A PET study of visuospatial attention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  M. Corbetta,et al.  Areas Involved in Encoding and Applying Directional Expectations to Moving Objects , 1999, The Journal of Neuroscience.

[21]  J. Allman,et al.  Mapping human visual cortex with positron emission tomography , 1986, Nature.

[22]  S. Luck,et al.  Electrocortical substrates of visual selective attention , 1993 .

[23]  J Nuyts,et al.  Different perceptual tasks performed with the same visual stimulus attribute activate different regions of the human brain: a positron emission tomography study. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[24]  W. Warren,et al.  The role of central and peripheral vision in perceiving the direction of self-motion , 1992, Perception & psychophysics.

[25]  G. Orban,et al.  The influence of stimulus location on the brain activation pattern in detection and orientation discrimination. A PET study of visual attention. , 1996, Brain : a journal of neurology.

[26]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[27]  G. Mangun Neural mechanisms of visual selective attention. , 1995, Psychophysiology.

[28]  W. Warren,et al.  Perception of translational heading from optical flow. , 1988, Journal of experimental psychology. Human perception and performance.

[29]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[30]  斎藤 秀昭,et al.  Integration of Direction Signals of Image Motion in the Superior Temporal Sulcus of the Macaque Monkey , 1987 .

[31]  J. Gibson,et al.  Parallax and perspective during aircraft landings. , 1955, The American journal of psychology.

[32]  Richard A. Andersen,et al.  Visual self-motion perception during head turns , 1998, Nature Neuroscience.

[33]  R. Andersen,et al.  Intention-related activity in the posterior parietal cortex: a review , 2000, Vision Research.

[34]  N. J. Herrod,et al.  Maintaining and shifting attention within left or right hemifield. , 2000, Cerebral cortex.

[35]  Paul B. Johnson,et al.  Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. , 1997, Annual review of neuroscience.

[36]  A. Verri,et al.  First-order analysis of optical flow in monkey brain. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[37]  S. Hillyard,et al.  Spatial Selective Attention Affects Early Extrastriate But Not Striate Components of the Visual Evoked Potential , 1996, Journal of Cognitive Neuroscience.

[38]  James A. Crowell,et al.  The perception of heading during eye movements , 1992, Nature.

[39]  Li Li,et al.  Perception of heading during rotation: sufficiency of dense motion parallax and reference objects , 2000, Vision Research.

[40]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[41]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[42]  Richard S. J. Frackowiak,et al.  Functional localization of the system for visuospatial attention using positron emission tomography. , 1997, Brain : a journal of neurology.

[43]  R. Andersen,et al.  Change in motor plan, without a change in the spatial locus of attention, modulates activity in posterior parietal cortex. , 1998, Journal of neurophysiology.

[44]  G. Orban,et al.  Attention to Speed of Motion, Speed Discrimination, and Task Difficulty: An fMRI Study , 2000, NeuroImage.

[45]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[46]  G A Orban,et al.  Attention to One or Two Features in Left or Right Visual Field: A Positron Emission Tomography Study , 1997, The Journal of Neuroscience.

[47]  R. M. Siegel,et al.  Speed selectivity for optic flow in area 7a of the behaving macaque. , 2000, Cerebral cortex.

[48]  Constance S. Royden,et al.  Differential effects of shared attention on perception of heading and 3-D object motion , 1999, Perception & psychophysics.

[49]  Guy A. Orban,et al.  The neuronal machinery involved in successive orientation discrimination , 1998, Progress in Neurobiology.

[50]  E. DeYoe,et al.  Graded effects of spatial and featural attention on human area MT and associated motion processing areas. , 1997, Journal of neurophysiology.

[51]  L. Vaina Complex motion perception and its deficits , 1998, Current Opinion in Neurobiology.

[52]  M N Shadlen,et al.  Motion perception: seeing and deciding. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[54]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  J Duysens,et al.  Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. , 1996, Journal of neurophysiology.

[56]  Ralph M. Siegel,et al.  Optic Flow Selectivity in the Anterior Superior Temporal Polysensory Area, STPa, of the Behaving Monkey , 1999, The Journal of Neuroscience.

[57]  Karl J. Friston,et al.  The functional anatomy of attention to visual motion. A functional MRI study. , 1998, Brain : a journal of neurology.

[58]  G A Orban,et al.  Human brain regions involved in direction discrimination. , 1998, Journal of neurophysiology.

[59]  G. Orban,et al.  Many areas in the human brain respond to visual motion. , 1994, Journal of neurophysiology.

[60]  S. Zeki,et al.  The cerebral activity related to the visual perception of forward motion in depth. , 1994, Brain : a journal of neurology.

[61]  D Regan,et al.  How do we avoid confounding the direction we are looking and the direction we are moving? , 1982, Science.

[62]  Leslie G. Ungerleider,et al.  Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. , 1998, Science.

[63]  Karl J. Friston,et al.  Cognitive Conjunction: A New Approach to Brain Activation Experiments , 1997, NeuroImage.

[64]  G. Mangun,et al.  Covariations in ERP and PET measures of spatial selective attention in human extrastriate visual cortex , 1997, Human brain mapping.

[65]  Brian P. Dyre,et al.  Image velocity magnitudes and perception of heading. , 1997, Journal of experimental psychology. Human perception and performance.

[66]  M. Gazzaniga,et al.  Combined spatial and temporal imaging of brain activity during visual selective attention in humans , 1994, Nature.

[67]  Keiji Tanaka,et al.  Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  A. Dale,et al.  The representation of the ipsilateral visual field in human cerebral cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[69]  R. M. Siegel,et al.  Modulation of responses to optic flow in area 7a by retinotopic and oculomotor cues in monkey. , 1997, Cerebral cortex.

[70]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[71]  D. Perrett,et al.  Responses of Anterior Superior Temporal Polysensory (STPa) Neurons to Biological Motion Stimuli , 1994, Journal of Cognitive Neuroscience.

[72]  K. Hoffmann,et al.  Optic Flow Processing in Monkey STS: A Theoretical and Experimental Approach , 1996, The Journal of Neuroscience.