Electronic States of Silicene Allotropes on Ag(111).

Silicene, a honeycomb lattice of silicon, presents a particular case of allotropism on Ag(111). Silicene forms multiple structures with alike in-plane geometry but different out-of-plane atomic buckling and registry to the substrate. Angle-resolved photoemission and first-principles calculations show that these silicene structures, with (4×4), (√13×√13)R13.9°, and (2√3×2√3)R30° lattice periodicity, display similar electronic bands despite the structural differences. In all cases the interaction with the substrate modifies the electronic states, which significantly differ from those of free-standing silicene. Complex photoemission patterns arise from surface umklapp processes, varying according to the periodicity of the silicene allotropes.

[1]  Angel Rubio,et al.  Electronic structure of silicene on Ag(111): Strong hybridization effects , 2013, 1305.2410.

[2]  J. Osiecki,et al.  Alloying of Sn in the surface layer of Ag(111) , 2013 .

[3]  Peng Cheng,et al.  Evidence of silicene in honeycomb structures of silicon on Ag(111). , 2012, Nano letters.

[4]  A. Locatelli,et al.  Absence of Dirac cones in monolayer silicene and multilayer Si films on Ag(111) , 2017 .

[5]  Atsushi Oshiyama,et al.  Absence and presence of Dirac electrons in silicene on substrates , 2013 .

[6]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[7]  N. Takagi,et al.  Substrate-induced symmetry breaking in silicene. , 2013, Physical review letters.

[8]  B. Aufray,et al.  Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  E. Minamitani,et al.  Electronic structure of the 4 × 4 silicene monolayer on semi-infinite Ag(111) , 2015 .

[10]  Cheng-Cheng Liu,et al.  Quantum spin Hall effect in silicene and two-dimensional germanium. , 2011, Physical review letters.

[11]  V. Fal’ko,et al.  Electrically tunable band gap in silicene , 2011, 1112.4792.

[12]  A. Dimoulas,et al.  Evidence for hybrid surface metallic band in (4 × 4) silicene on Ag(111) , 2013 .

[13]  J. Sadowski,et al.  Tuning of silicene-substrate interactions with potassium adsorption , 2013 .

[14]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[15]  C. Struzzi,et al.  Silicene on Ag(111): A honeycomb lattice without Dirac bands , 2014, 2306.17524.

[16]  G. Tallarida,et al.  Exploring the morphological and electronic properties of silicene superstructures , 2014 .

[17]  F. Himpsel,et al.  Lateral quantum wells at vicinal Au(111) studied with angle-resolved photoemission , 2002 .

[18]  Daniele Chiappe,et al.  Local Electronic Properties of Corrugated Silicene Phases , 2012, Advanced materials.

[19]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[20]  Hiroyuki Kawai,et al.  Experimental evidence for epitaxial silicene on diboride thin films. , 2012, Physical review letters.

[21]  N. Takagi,et al.  Structural transition of silicene on Ag(111) , 2013 .

[22]  S. Lebègue,et al.  Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.

[23]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[24]  W. Gudat,et al.  Photoemission from stepped W(110): initial or final state effect? , 2004, Physical review letters.

[25]  Salvatore Stagira,et al.  Optical response and ultrafast carrier dynamics of the silicene-silver interface , 2015 .

[26]  S. Bengió,et al.  Electronic structure of reconstructed Au(100): Two-dimensional and one-dimensional surface states , 2012 .

[27]  J. Avila,et al.  Presence of gapped silicene-derived band in the prototypical (3 × 3) silicene phase on silver (111) surfaces , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  L. Meng,et al.  Buckled silicene formation on Ir(111). , 2013, Nano letters.

[29]  D. Westphal,et al.  Adsorbate-induced umklapp processes in photoemission from Cl on Cu , 1983 .

[30]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[31]  A. Locatelli,et al.  Coexistence of multiple silicene phases in silicon grown on Ag(1 1 1) , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  G. Lapeyre,et al.  Chemisorption-Induced Surface Umklapp Processes in Angle-Resolved Synchrotron Photoemission from W(001) , 1976 .

[33]  M. Weinert,et al.  Revealing the substrate origin of the linear dispersion of silicene/Ag(111). , 2014, Nano letters.

[34]  M. Ezawa A topological insulator and helical zero mode in silicene under an inhomogeneous electric field , 2012, 1201.3687.

[35]  Noriaki Takagi,et al.  Structure of Silicene Grown on Ag(111) , 2012 .