Meshless Helmholtz-Hodge Decomposition

Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving (divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the sum of three uniquely defined components: curl free, divergence free and harmonic. This decomposition is usually achieved by using mesh-based methods such as finite differences or finite elements. This work presents a new meshless approach to the Helmholtz-Hodge decomposition for the analysis of 2D discrete vector fields. It embeds into the SPH particle-based framework. The proposed method is efficient and can be applied to extract features from a 2D discrete vector field and to multiphase fluid flow simulation to ensure incompressibility.

[1]  Anne Cuzol,et al.  A Low Dimensional Fluid Motion Estimator , 2007, International Journal of Computer Vision.

[2]  Afonso Paiva,et al.  Vector field reconstruction from sparse samples with applications , 2006, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing.

[3]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[4]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[5]  TongYiying,et al.  Discrete multiscale vector field decomposition , 2003 .

[6]  Fabrice Colin,et al.  Computing a null divergence velocity field using smoothed particle hydrodynamics , 2006, J. Comput. Phys..

[7]  Mrinal K. Mandal,et al.  Efficient Hodge-Helmholtz decomposition of motion fields , 2005, Pattern Recognit. Lett..

[8]  Greg Humphreys,et al.  A spatial data structure for fast Poisson-disk sample generation , 2006, ACM Trans. Graph..

[9]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[10]  Afonso Paiva,et al.  Particle-based non-Newtonian fluid animation for melting objects , 2006, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing.

[11]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[12]  Not Available Not Available Meshfree particle methods , 2000 .

[13]  Santiago V. Lombeyda,et al.  Discrete multiscale vector field decomposition , 2003, ACM Trans. Graph..

[14]  Feng Ying Lin Smoothed particle hydrodynamics , 2005 .

[15]  Robert Bridson,et al.  Curl-noise for procedural fluid flow , 2007, ACM Trans. Graph..

[16]  Konstantin Mischaikow,et al.  Efficient Morse Decompositions of Vector Fields , 2008, IEEE Transactions on Visualization and Computer Graphics.

[17]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[18]  Hans Hagen,et al.  Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..

[19]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[20]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[21]  Markus H. Gross,et al.  Particle-based fluid-fluid interaction , 2005, SCA '05.

[22]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[23]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[24]  K. Polthier,et al.  Variational Approach to Vector Field Decomposition , 2000, VisSym.

[25]  Konrad Polthier,et al.  Identifying Vector Field Singularities Using a Discrete Hodge Decomposition , 2002, VisMath.

[26]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[27]  Markus H. Gross,et al.  Eurographics Symposium on Point-based Graphics (2005) a Unified Lagrangian Approach to Solid-fluid Animation , 2022 .

[28]  C. Diaz-Goano,et al.  A fictitious domain/finite element method for particulate flows , 2003 .