Integral algorithm and density matrix integration scheme for ab initio band structure calculations on polymeric systems

A new program for band structure calculations of periodic one‐dimensional systems has been constructed. It is distinguishable from other codes by the efficient two‐electron integral evaluation and the integration schemes of the density matrix in the first Brillouin zone. The computation of polymeric two‐electron integrals is based on the McMurchie Davidson algorithm and builds batches of the different cell indices included in the polymeric system. Consequently it presents efficient scaling with respect to the number of unit cells taken into account. Our algorithm takes into account fully the polymeric symmetry rather than the molecular symmetry. A semidirect procedure where only exchange integrals are computed at each SCF cycle is proposed in order to maintain balance between computation time and disk space. In addition, the integration of the density matrix over a large number of cell indices can be performed by different methods, such as Gauss‐Legendre, Clenshaw‐Curtis, Filon, and Alaylioglu‐Evans‐Hyslop. This last scheme is able to obtain an accuracy of 10−13 a.u. on each individual density matrix element for all cell indices with only 48 k‐points. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1430–1444, 2002

[1]  Feng Long Gu,et al.  Extension of the Genkin and Mednis treatment for dynamic polarizabilities and hyperpolarizabilities of infinite periodic systems. I. Coupled perturbed Hartree–Fock theory , 2000 .

[2]  L. Filon III.—On a Quadrature Formula for Trigonometric Integrals. , 1930 .

[3]  K. Kudin,et al.  Linear scaling density functional theory with Gaussian orbitals and periodic boundary conditions , 2000 .

[4]  So Hirata,et al.  Analytical energy gradients in second-order Mo/ller–Plesset perturbation theory for extended systems , 1998 .

[5]  Peter M. W. Gill,et al.  The prism algorithm for two-electron integrals , 1991 .

[6]  M. Springborg,et al.  Static (hyper-)polarizabilities of infinite, conjugated polymers in the framework of density-functional theory , 1999 .

[7]  Henry F. Schaefer,et al.  New variations in two-electron integral evaluation in the context of direct SCF procedures , 1991 .

[8]  H. Bernhard Schlegel,et al.  An efficient algorithm for calculating ab initio energy gradients using s, p Cartesian Gaussians , 1982 .

[9]  Lloyd D. Fosdick,et al.  An algorithm for Filon quadrature , 1969, CACM.

[10]  R. Bartlett,et al.  Many-body Green's-function calculations on the electronic excited states of extended systems , 2000 .

[11]  R. Bartlett,et al.  Analytical evaluation of energy derivatives in extended systems. I. Formalism , 1998 .

[12]  J. Almlöf,et al.  Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .

[13]  J. G. Fripiat,et al.  Efficient computation of electron-repulsion integrals in ab initio studies of polymeric systems , 1993 .

[14]  M. Head‐Gordon,et al.  Configuration interaction singles, time-dependent Hartree-Fock, and time-dependent density functional theory for the electronic excited states of extended systems , 1999 .

[15]  B. Champagne,et al.  Long-range effects in optimizing the geometry of stereoregular polymers. I. Formalism , 1999 .

[16]  J. D. Cloizeaux,et al.  Energy Bands and Projection Operators in a Crystal: Analytic and Asymptotic Properties , 1964 .

[17]  Philippe Y. Ayala,et al.  Atomic orbital Laplace-transformed second-order Møller–Plesset theory for periodic systems , 2001 .

[18]  R. Lindh,et al.  An efficient method of implementing the horizontal recurrence relation in the evaluation of electron repulsion integrals using Cartesian Gaussian functios , 1991 .

[19]  R. Bartlett,et al.  Correlated vibrational frequencies of polymers: MBPT(2) for all-trans polymethineimine , 1998 .

[20]  Roberto Dovesi,et al.  ON THE USE OF SYMMETRY-ADAPTED CRYSTALLINE ORBITALS IN SCF-LCAO PERIODIC CALCULATIONS. I. THE CONSTRUCTION OF THE SYMMETRIZED ORBITALS , 1998 .

[21]  R. Orlando,et al.  CRYSTAL and EMBED, two computational tools for the ab initio study of electronic properties of crystals , 2000 .

[22]  F. Harris Hartree-Fock Studies of Electronic Structures of Crystalline Solids , 1975 .

[23]  Benny G. Johnson,et al.  Two‐electron repulsion integrals over Gaussian s functions , 1991 .

[24]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .

[25]  L. Piela,et al.  Multipole expansion in tight-binding Hartree-Fock calculations for infinite model polymers , 1980 .

[26]  Michel Dupuis,et al.  Computation of electron repulsion integrals using the rys quadrature method , 1983 .

[27]  Bartolomeo Civalleri,et al.  Hartree–Fock geometry optimisation of periodic systems with the Crystal code , 2001 .

[28]  B. Champagne,et al.  Long-range effects in optimizing the geometry of stereoregular polymers. II. Hydrogen fluoride chains as a working example , 1999 .

[29]  Benny G. Johnson,et al.  The efficient transformation of (m0|n0) to (ab|cd) two-electron repulsion integrals , 1993 .

[30]  Michel Dupuis,et al.  Evaluation of molecular integrals over Gaussian basis functions , 1976 .

[31]  Benny G. Johnson,et al.  Exact and approximate solutions to the one‐center McMurchie–Davidson tree‐search problem , 1991 .

[32]  J. G. Fripiat,et al.  Convergence of exchange lattice summations in direct-space polymer calculations , 2002 .

[33]  Peter M. W. Gill,et al.  Molecular integrals Over Gaussian Basis Functions , 1994 .

[34]  Roberto Dovesi,et al.  On the use of symmetry‐adapted crystalline orbitals in SCF‐LCAO periodic calculations. II. Implementation of the self‐consistent‐field scheme and examples , 1998 .

[35]  G. Scuseria,et al.  An efficient finite field approach for calculating static electric polarizabilities of periodic systems , 2000 .

[36]  Denis Jacquemin,et al.  Model calculations of the first hyperpolarisability per unit cell of finite and infinite polymethineimine chains , 1995, Optics & Photonics.

[37]  L. Piela,et al.  An efficient procedure to evaluate long-range coulombic interactions within the framework of the LCAO–CO method for infinite polymers , 1978 .

[38]  D. M. Bishop,et al.  Coupled-perturbed Hartree–Fock theory for infinite periodic systems: Calculation of static electric properties of (LiH)n, (FH)n, (H2O)n, (–CNH–)n, and (–CH=CH–)n , 2001 .

[39]  H. Teramae Study on the behavior of energy convergence in ab initio crystal orbital calculations , 1996 .

[40]  I. Panas Two-electron integrals and integral derivatives revisited , 1991 .

[41]  S. Ten-no An efficient algorithm for electron repulsion integrals over contracted Gaussian-type functions , 1993 .

[42]  Rodney J. Bartlett,et al.  Second‐order many‐body perturbation‐theory calculations in extended systems , 1996 .

[43]  Martin Head-Gordon,et al.  A method for two-electron Gaussian integral and integral derivative evaluation using recurrence relations , 1988 .

[44]  G. Evans Practical Numerical Integration , 1993 .

[45]  J. Ladik,et al.  On efficient integration techniques for oscillatory integrals in periodic system calculations , 1981 .

[46]  Warren J. Hehre,et al.  Computation of electron repulsion integrals involving contracted Gaussian basis functions , 1978 .

[47]  Michel Dupuis,et al.  Numerical integration using rys polynomials , 1976 .

[48]  B. Champagne,et al.  Long‐range effects in optimizing the geometry of stereoregular polymers—IV: Explicit determination of the helical angle , 2001 .

[49]  J. Ladik,et al.  Quantum theory of polymers as solids , 1988 .

[50]  D. M. Bishop,et al.  Crystal orbital calculation of coupled Hartree–Fock dynamic (hyper)polarizabilities for prototype π-conjugated polymers , 2001 .

[51]  B. Champagne,et al.  Ab initio dynamic polarizabilities of polymers. I. Hydrogen chain models , 1996 .

[52]  J. G. Fripiat,et al.  Unrestricted Hartree–Fock band structure calculations for polymers: Application to a cross-talk system , 2000 .

[53]  Gustavo E. Scuseria,et al.  A redundant internal coordinate algorithm for optimization of periodic systems , 2001 .