The Extended Mean Values: Definition, Properties, Monotonicities, Comparison, Convexities, Generalizations, and Applications

The extended mean values E(r, s; x, y) play an important role in theory of mean values and theory of inequalities, and even in the whole mathematics, since many norms in mathematics are always means. Its study is not only interesting but important, both because most of the two-variable mean values are special cases of E(r, s; x, y), and because it is challenging to study a function whose formulation is so indeterminate. In this expositive article, we summarize the recent main results about study of E(r, s; x, y), including definition, basic properties, monotonicities, comparison, logarithmic convexities, Schur-convexities, generalizations of concepts of mean values, applications to quantum, to theory of special functions, to establishment of Steffensen pairs, and to generalization of Hermite-Hadamard’s inequality.

[1]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[2]  Feng Qi,et al.  Generalized weighted mean values with two parameters† , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  INEQUALITIES FOR GENERALIZED WEIGHTED MEAN VALUES OF CONVEX FUNCTION , 2001 .

[4]  Young-Ho Kim,et al.  Refinements and Extensions of an Inequality , 2000 .

[5]  T. Erber The gamma function inequalities of Gurland and Gautschi , 1960 .

[6]  E. B. Leach,et al.  Extended mean values II , 1983 .

[7]  A. Laforgia,et al.  An inequality for the product of two integrals relating to the incomplete gamma function. , 2000 .

[8]  Some Inequalities Involving the Geometric Mean of Natural Numbers and the Ratio of Gamma Functions , 2000 .

[9]  H. Minc,et al.  Some Inequalities involving (r!)1/r , 1964, Proceedings of the Edinburgh Mathematical Society.

[10]  P. Slater Hall normalization constants for the Bures volumes of the n-state quantum systems , 1999, quant-ph/9904101.

[11]  Lokenath Debnath,et al.  GENERALIZATIONS OF BERNOULLI NUMBERS AND POLYNOMIALS , 2003 .

[12]  NEW STEFFENSEN PAIRS , 2000 .

[13]  C. Pearce,et al.  Stolarsky Means and Hadamard's Inequality☆ , 1998 .

[14]  Feng Qi (祁锋),et al.  A simple proof of monotonicity for extended mean values , 1998 .

[15]  Feng Qi,et al.  Generalized Abstracted Mean Values , 2000 .

[16]  Feng Qi (祁锋) SCHUR-CONVEXITY OF THE EXTENDED MEAN VALUES , 2001 .

[17]  H. Gauchman,et al.  STEFFENSEN TYPE INEQUALITIES OVER GENERAL MEASURE SPACES , 1997 .

[18]  Feng Qi,et al.  NEW PROOFS OF WEIGHTED POWER MEAN INEQUALITIES AND MONOTONICITY FOR GENERALIZED WEIGHTED MEAN VALUES , 2000 .

[19]  Zsolt Páles,et al.  Inequalities for differences of powers , 1988 .

[20]  On Steffensen pairs , 2002 .

[21]  Feng Qi,et al.  The function $(b^x-a^x)/x$: Inequalities and properties , 1998 .

[22]  Feng Qi,et al.  Logarithmic convexity of extended mean values , 2001 .

[23]  Feng Qi,et al.  Monotonicity Results and Inequalities for the Gamma and Incomplete Gamma Functions , 2002 .

[24]  D. Kershaw Some extensions of W. Gautschi’s inequalities for the gamma function , 1983 .

[25]  Y. Tong,et al.  Convex Functions, Partial Orderings, and Statistical Applications , 1992 .

[26]  Feng Qi (祁锋),et al.  A new proof of monotonicity for extended mean values , 1999 .

[27]  A. M. Fink An Essay on the History of Inequalities , 2000 .

[28]  Feng Qi (祁锋),et al.  Note on monotonicity of generalized weighted mean values , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Feng Qi (祁锋),et al.  TAMKANG JOURNAL OF MATHEMATICS Volume 29, Number 2, Summer 1998 ON A TWO-PARAMETER FAMILY OF NONHOMOGENEOUS MEAN VALUES , 2021 .

[30]  D. S. Mitrinovic,et al.  Classical and New Inequalities in Analysis , 1992 .

[31]  Josip Pečarić,et al.  A Note on Schur-Convex Functions , 2000 .

[32]  P. Slater A priori probabilities of separable quantum states , 1998, quant-ph/9810026.

[33]  Feng Qi (祁锋),et al.  Refinements and Extensions of an Inequality, III☆ , 1998 .

[34]  E. B. Leach,et al.  Extended Mean Values , 1978 .

[35]  Feng Qi (祁锋),et al.  Generalization of Bernoulli polynomials , 2002 .

[36]  W. Gautschi Some Elementary Inequalities Relating to the Gamma and Incomplete Gamma Function , 1959 .

[37]  Feng Qi (祁锋),et al.  Some inequalities constructed by Tchebysheff's integral inequality , 1999 .

[38]  Feng Qi (祁锋),et al.  Some Inequalities of the Incomplete Gamma and Related Functions , 1999 .

[39]  Feng Qi,et al.  Monotonicity Results For The Gamma Function , 2002 .

[40]  K. Stolarsky,et al.  Generalizations of the Logarithmic Mean , 1975 .

[41]  H. Gauchman Steffensen pairs and associated inequalities , 2000 .

[42]  Charles E. M. Pearce,et al.  Selected Topics on Hermite-Hadamard Inequalities and Applications , 2003 .

[43]  Josip Pečarić,et al.  The best bounds in Gautschi's inequality , 2000 .

[44]  Feng Qi (祁锋),et al.  INEQUALITIES FOR THE INCOMPLETE GAMMA AND RELATED FUNCTIONS , 1999 .