Phase I study of low-dose metronomic temozolomide for recurrent malignant gliomas

[1]  J. Wolchok,et al.  Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25 , 2015, Cell Research.

[2]  F. Végran,et al.  Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth. , 2013, The Journal of investigative dermatology.

[3]  L. Deangelis,et al.  Phase II trial of continuous low-dose temozolomide for patients with recurrent malignant glioma. , 2013, Neuro-oncology.

[4]  P. Gutin,et al.  NovoTTF-100A versus physician's choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. , 2012, European journal of cancer.

[5]  S. Ansell,et al.  Soluble IL-2Rα facilitates IL-2-mediated immune responses and predicts reduced survival in follicular B-cell non-Hodgkin lymphoma. , 2011, Blood.

[6]  A. Koch,et al.  Continuous low-dose temozolomide and celecoxib in recurrent glioblastoma , 2010, Journal of Neuro-Oncology.

[7]  David C. Alsop,et al.  Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging , 2010, Neuroradiology.

[8]  Jung-Il Lee,et al.  Phase II trial of low-dose continuous (metronomic) treatment of temozolomide for recurrent glioblastoma. , 2010, Neuro-oncology.

[9]  T. Mikkelsen,et al.  Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[10]  Masahiro Inoue,et al.  Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. , 2009, Cancer cell.

[11]  F. Ghiringhelli,et al.  Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model , 2009, Cancer Immunology, Immunotherapy.

[12]  John A Butman,et al.  Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[13]  D. Alsop,et al.  Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields , 2008, Magnetic resonance in medicine.

[14]  本吉 康英 Different mechanisms for anti-tumor effects of low- and high-dose cyclophosphamide , 2008 .

[15]  I. Jonassen,et al.  Angiogenesis-independent tumor growth mediated by stem-like cancer cells , 2006, Proceedings of the National Academy of Sciences.

[16]  K. Eguchi,et al.  Different mechanisms for anti-tumor effects of low- and high-dose cyclophosphamide. , 2006, Oncology reports.

[17]  E. Wong Tumor growth, invasion, and angiogenesis in malignant gliomas , 2006, Journal of Neuro-Oncology.

[18]  R. Kerbel,et al.  Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. , 2005, Blood.

[19]  Kevin J. Tracey,et al.  High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal , 2005, Nature Reviews Immunology.

[20]  S. Murakami Soluble interleukin-2 receptor in cancer. , 2004, Frontiers in bioscience : a journal and virtual library.

[21]  William C. Parks,et al.  Matrix metalloproteinases as modulators of inflammation and innate immunity , 2004, Nature Reviews Immunology.

[22]  D. Hicklin,et al.  A Comparative Analysis of Low-Dose Metronomic Cyclophosphamide Reveals Absent or Low-Grade Toxicity on Tissues Highly Sensitive to the Toxic Effects of Maximum Tolerated Dose Regimens , 2004, Cancer Research.

[23]  Robert S. Kerbel,et al.  The anti-angiogenic basis of metronomic chemotherapy , 2004, Nature Reviews Cancer.

[24]  B. Chauffert,et al.  CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative , 2004, European journal of immunology.

[25]  Peter Bohlen,et al.  Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. , 2002, Cancer research.

[26]  R. Schilsky,et al.  First-line oral capecitabine therapy in metastatic colorectal cancer: a favorable safety profile compared with intravenous 5-fluorouracil/leucovorin. , 2002, Annals of oncology : official journal of the European Society for Medical Oncology.

[27]  A. Buzdar,et al.  Multicenter, Phase II study of capecitabine in taxane‐pretreated metastatic breast carcinoma patients , 2001, Cancer.

[28]  M P Carol,et al.  MR-spectroscopy guided target delineation for high-grade gliomas. , 2001, International journal of radiation oncology, biology, physics.

[29]  D. Osoba,et al.  A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse , 2000, British Journal of Cancer.

[30]  Susan M. Chang,et al.  Multicenter phase II trial of temozolomide in patients with anaplastic astrocytoma or anaplastic oligoastrocytoma at first relapse. Temodal Brain Tumor Group. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[31]  M J Gleason,et al.  Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[32]  E. Shevach,et al.  CD4+CD25+ Immunoregulatory T Cells Suppress Polyclonal T Cell Activation In Vitro by Inhibiting Interleukin 2 Production , 1998, The Journal of experimental medicine.

[33]  M. Klempner,et al.  Specific matrix metalloproteinase profiles in the cerebrospinal fluid correlated with the presence of malignant astrocytomas, brain metastases, and carcinomatous meningitis , 1998, Cancer.

[34]  P. Forsyth,et al.  Phase II study of prolonged oral therapy with etoposide (VP16) for patients with recurrent malignant glioma , 1996, Journal of Neuro-Oncology.

[35]  C. Quarterman,et al.  Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC 362856). , 1992, British Journal of Cancer.

[36]  T. Cascino,et al.  Response criteria for phase II studies of supratentorial malignant glioma. , 1990, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[37]  R. North Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells , 1982, The Journal of experimental medicine.

[38]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[39]  T. Cloughesy,et al.  Regional and Voxel‐Wise Comparisons of Blood Flow Measurements Between Dynamic Susceptibility Contrast Magnetic Resonance Imaging (DSC‐MRI) and Arterial Spin Labeling (ASL) in Brain Tumors , 2014, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[40]  A. Heimberger,et al.  The role of tregs in glioma-mediated immunosuppression: potential target for intervention. , 2010, Neurosurgery clinics of North America.

[41]  G. A. Rouleau,et al.  Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma , 2009 .

[42]  J. Uhm Temozolomide Rechallenge in Recurrent Malignant Glioma by Using a Continuous Temozolomide Schedule: The “Rescue” Approach , 2009 .

[43]  A. Teramoto,et al.  The expression of matrix metalloproteinase-2 and-9 in human gliomas of different pathological grades , 2006, Brain Tumor Pathology.

[44]  D. Carney The pharmacology of intravenous and oral etoposide , 1991, Cancer.

[45]  D. Alsop,et al.  Cerebrospinal Fluid Research Cerebrospinal Fluid Matrix Metalloproteinase-9 Increases during Treatment of Recurrent Malignant Gliomas , 2022 .