Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

Electrochemical strain microscopy (ESM) is a powerful atomic force microscopy (AFM) mode for the investigation of ion dynamics and activities in energy storage materials. Here we compare the changes in commercial LiFePO4 cathodes due to ageing and its influence on the measured ESM signal. Additionally, the ESM signal dynamics are analysed to generate characteristic time constants of the diffusion process, induced by a dc-voltage pulse, which changes the ionic concentration in the material volume under the AFM tip. The ageing of the cathode is found to be governed by a decrease of the electrochemical activity and the loss of available lithium for cycling, which can be stored in the cathode.

[1]  R. Ishikawa,et al.  Grain boundary Li-ion conductivity in (Li0.33La0.56)TiO3 polycrystal , 2020 .

[2]  R. Hausbrand,et al.  Characterization of the Interfaces in LiFePO4/PEO-LiTFSI Composite Cathodes and to the Adjacent Layers , 2019, Journal of The Electrochemical Society.

[3]  K. Friedrich,et al.  Visualization of Local Ionic Concentration and Diffusion Constants Using a Tailored Electrochemical Strain Microscopy Method , 2019, Journal of The Electrochemical Society.

[4]  R. Schierholz,et al.  Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3 , 2018, Beilstein journal of nanotechnology.

[5]  D. Sauer,et al.  Post-mortem analysis on LiFePO4|Graphite cells describing the evolution & composition of covering layer on anode and their impact on cell performance , 2017 .

[6]  K. Ryu,et al.  Study of the lithium diffusion properties and high rate performance of TiNb6O17 as an anode in lithium secondary battery , 2017, Scientific Reports.

[7]  M. Stich,et al.  In Situ Studies of Solid Electrolyte Interphase (SEI) Formation on Crystalline Carbon Surfaces by Neutron Reflectometry and Atomic Force Microscopy. , 2017, ACS applied materials & interfaces.

[8]  Wei Cai,et al.  Multi-characterization of LiCoO2 cathode films using advanced AFM-based techniques with high resolution , 2017, Scientific Reports.

[9]  Marshall C. Smart,et al.  Factors Limiting Li + Charge Transfer Kinetics in Li-Ion Batteries , 2017 .

[10]  Anders Hammer Strømman,et al.  Identifying key assumptions and differences in life cycle assessment studies of lithium-ion traction batteries with focus on greenhouse gas emissions , 2017 .

[11]  M. Winter,et al.  Lithium loss in the solid electrolyte interphase: Lithium quantification of aged lithium ion battery graphite electrodes by means of laser ablation inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectroscopy , 2017 .

[12]  B. Roling,et al.  Correlation between drive amplitude and resonance frequency in electrochemical strain microscopy: Influence of electrostatic forces , 2017 .

[13]  R. Ishikawa,et al.  Relative Li-ion mobility mapping in Li0.33La0.56TiO3 polycrystalline by electron backscatter diffraction and electrochemical strain microscopy , 2017 .

[14]  Ting Guan,et al.  Changes of Degradation Mechanisms of LiFePO4/Graphite Batteries Cycled at Different Ambient Temperatures , 2017 .

[15]  U. Kunz,et al.  Mechanical Behavior during Electrochemical and Mechanical Deactivation of an Aged Electrode in a Lithium-Ion Pouch Cell , 2016 .

[16]  David A. Wetz,et al.  Characterizing rapid capacity fade and impedance evolution in high rate pulsed discharged lithium iron phosphate cells for complex, high power loads , 2016 .

[17]  F. Marone,et al.  Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes , 2016, Nature Communications.

[18]  F. Jiang,et al.  Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters , 2016, Scientific Reports.

[19]  T.V.S.L. Satyavani,et al.  Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells , 2016 .

[20]  P. S. Jørgensen,et al.  Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodes , 2016 .

[21]  David S. Eastwood,et al.  Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High‐Speed Operando Tomography and Digital Volume Correlation , 2015, Advanced science.

[22]  Hugues-Yanis Amanieu Nanomechanics of Li-ion battery materials , 2015 .

[23]  Daniele Di Lecce,et al.  Lithium Transport Properties in LiMn1−αFeαPO4 Olivine Cathodes , 2015 .

[24]  A. Kholkin,et al.  Li transport in fresh and aged LiMn2O4 cathodes via electrochemical strain microscopy , 2015 .

[25]  Li Lu,et al.  In situ studies of lithium-ion diffusion in a lithium-rich thin film cathode by scanning probe microscopy techniques. , 2015, Physical chemistry chemical physics : PCCP.

[26]  A. Kholkin,et al.  Electrochemical strain microscopy time spectroscopy: Model and experiment on LiMn2O4 , 2015 .

[27]  Kevin G. Gallagher,et al.  The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction , 2015 .

[28]  Z. Ogumi,et al.  X-ray absorption fine structure imaging of inhomogeneous electrode reaction in LiFePO 4 lithium-ion battery cathode , 2014 .

[29]  A. Kholkin,et al.  Li distribution in graphite anodes: A Kelvin Probe Force Microscopy approach , 2014 .

[30]  P. Chaudhuri,et al.  Effect of Li+ ion mobility on the grain boundary conductivity of Li2TiO3 nanoceramics , 2014, Journal of Advanced Ceramics.

[31]  Bharat Bhushan,et al.  In situ atomic force microscopy analysis of morphology and particle size changes in lithium iron phosphate cathode during discharge. , 2014, Journal of colloid and interface science.

[32]  Q. Chen,et al.  Mechanisms of electromechanical coupling in strain based scanning probe microscopy , 2014, 1404.2369.

[33]  Lars Ole Valøen,et al.  Life Cycle Assessment of a Lithium‐Ion Battery Vehicle Pack , 2014 .

[34]  Sergei V. Kalinin,et al.  Electrochemical strain microscopy of local electrochemical processes in solids: mechanism of imaging and spectroscopy in the diffusion limit , 2014, Journal of Electroceramics.

[35]  S. Han,et al.  Numerical study of grain boundary effect on Li+ effective diffusivity and intercalation-induced stresses in Li-ion battery active materials , 2013 .

[36]  K. Friedrich,et al.  AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries , 2013, Beilstein journal of nanotechnology.

[37]  Amit Kumar,et al.  Toward quantitative electrochemical measurements on the nanoscale by scanning probe microscopy: environmental and current spreading effects. , 2013, ACS nano.

[38]  Li Lu,et al.  Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques. , 2013, ACS nano.

[39]  R. Li,et al.  Surface aging at olivine LiFePO4: a direct visual observation of iron dissolution and the protection role of nano-carbon coating , 2013 .

[40]  Rahul Malik,et al.  A Critical Review of the Li Insertion Mechanisms in LiFePO4 Electrodes , 2013 .

[41]  G. Cao,et al.  Delineating local electromigration for nanoscale probing of lithium ion intercalation and extraction by electrochemical strain microscopy , 2012 .

[42]  Sergei V. Kalinin,et al.  Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level , 2012 .

[43]  S. Kalinin,et al.  Electrochemical strain microscopy with blocking electrodes: The role of electromigration and diffusion , 2012 .

[44]  Sergei V. Kalinin,et al.  Frequency dependent dynamical electromechanical response of mixed ionic-electronic conductors , 2011, 1112.3766.

[45]  Moses Ender,et al.  Quantitative Characterization of LiFePO4 Cathodes Reconstructed by FIB/SEM Tomography , 2012 .

[46]  V. Tsukruk,et al.  Scanning Probe Microscopy of Soft Matter: Fundamentals and Practices , 2011 .

[47]  T. Abe,et al.  In Situ AFM Study of Surface Film Formation on the Edge Plane of HOPG for Lithium-Ion Batteries , 2011 .

[48]  Stephen Jesse,et al.  Direct mapping of ionic transport in a Si anode on the nanoscale: time domain electrochemical strain spectroscopy study. , 2011, ACS nano.

[49]  Sergei V. Kalinin,et al.  Probing Li-ion Dynamics and Reactivity on the Nanoscale , 2011 .

[50]  Ning Li,et al.  LiFePO4 Cathode Material , 2011 .

[51]  Claus Daniel,et al.  Direct Mapping of Ion Diffusion Times on LiCoO2 Surfaces with Nanometer Resolution , 2011 .

[52]  J. Schmidt,et al.  Studies on LiFePO4 as cathode material using impedance spectroscopy , 2011 .

[53]  M. Dubarry,et al.  Identifying battery aging mechanisms in large format Li ion cells , 2011 .

[54]  Lixia Yuan,et al.  Development and challenges of LiFePO4 cathode material for lithium-ion batteries , 2011 .

[55]  S. Kalinin,et al.  Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, Vegard strains, and flexoelectric effect , 2011 .

[56]  Sergei V. Kalinin,et al.  Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. , 2010, Nature nanotechnology.

[57]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[58]  Stephen Jesse,et al.  Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. , 2010, Nano letters.

[59]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[60]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[61]  Sergei V. Kalinin,et al.  Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms , 2010, 1004.0507.

[62]  S. Kalinin,et al.  Electromechanical Probing of Ionic Currents in Energy Storage Materials , 2010 .

[63]  C. Delmas,et al.  X-Ray Photoelectron Spectroscopy Investigations of Carbon-Coated LixFePO4 Materials , 2008 .

[64]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[65]  Minoru Inaba,et al.  Electrochemical AFM study of LiMn2O4 thin film electrodes exposed to elevated temperatures , 2008 .

[66]  D. Aurbach,et al.  More on the performance of LiFePO4 electrodes—The effect of synthesis route, solution composition, aging, and temperature , 2007 .

[67]  Y. Shao-horn,et al.  Atomic force microscopy studies of surface and dimensional changes in LixCoO2 crystals during lithium de-intercalation , 2007 .

[68]  Stephen Jesse,et al.  Resonance enhancement in piezoresponse force microscopy: Mapping electromechanical activity, contact stiffness, and Q factor , 2006 .

[69]  Stephen Jesse,et al.  Dynamic behaviour in piezoresponse force microscopy. , 2006, Nanotechnology.

[70]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[71]  K. Amine,et al.  High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells , 2005 .

[72]  H. Fuchs,et al.  Probing ion transport at the nanoscale: Time-domain electrostatic force spectroscopy on glassy electrolytes , 2004, cond-mat/0405103.

[73]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[74]  R. Tilley Understanding Solids; The Science of Materials , 2004 .

[75]  K. Sawai,et al.  Factors Affecting Rate Capability of Graphite Electrodes for Lithium-Ion Batteries , 2003 .

[76]  Pier Paolo Prosini,et al.  Determination of the chemical diffusion coefficient of lithium in LiFePO4 , 2002 .

[77]  Doron Aurbach,et al.  The study of lithium insertion–deinsertion processes into composite graphite electrodes by in situ atomic force microscopy (AFM) , 2002 .

[78]  Doron Aurbach,et al.  Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy , 2000 .

[79]  P. Novák,et al.  Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes , 2000 .

[80]  Hiroshi Tokumoto,et al.  Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy , 1998 .

[81]  Paul Shewmon,et al.  Diffusion in Solids , 2016 .

[82]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .