Laser wakefield accelerator based light sources: potential applications and requirements

In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, x-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser–plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

[1]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[2]  S. Fourmaux,et al.  In-line phase-contrast imaging with a laser-based hard x-ray source , 2005 .

[3]  R. Lewis,et al.  Medical phase contrast x-ray imaging: current status and future prospects. , 2004, Physics in medicine and biology.

[4]  Eric Esarey,et al.  Low-emittance electron bunches from a laser-plasma accelerator measured using single-shot x-ray spectroscopy. , 2012 .

[5]  P. P. Rajeev,et al.  Gamma-rays from harmonically resonant betatron oscillations in a plasma wake , 2011 .

[6]  K. Moffat,et al.  X-ray Capabilities on the Picosecond Timescale at the Advanced Photon Source , 2012 .

[7]  Tae Jun Yu,et al.  Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses. , 2013, Physical review letters.

[8]  K. Tanaka,et al.  Development of multi-channel electron spectrometer. , 2010, The Review of scientific instruments.

[9]  M Galimberti,et al.  Intense gamma-ray source in the giant-dipole-resonance range driven by 10-TW laser pulses. , 2008, Physical review letters.

[10]  Tae Jun Yu,et al.  Stable generation of GeV-class electron beams from self-guided laser–plasma channels , 2008 .

[11]  T. Ditmire,et al.  Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV , 2013, Nature Communications.

[12]  Timur Zh. Esirkepov,et al.  Nonlinear Thomson scattering in the strong radiation damping regime , 2005 .

[13]  V Malka,et al.  Observation of longitudinal and transverse self-injections in laser-plasma accelerators , 2013, Nature Communications.

[14]  S. Wilkins,et al.  Phase-contrast imaging using polychromatic hard X-rays , 1996, Nature.

[15]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[16]  Zulfikar Najmudin,et al.  X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator , 2011 .

[17]  Richard A. London,et al.  Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser , 2012, Nature.

[18]  A. Berinde,et al.  NUCLEAR RESONANCE FLUORESCENCE , 1961 .

[19]  Rajiv C. Shah,et al.  All-optical Compton gamma-ray source , 2012, Nature Photonics.

[20]  Antoine Rousse,et al.  Betatron oscillations of electrons accelerated in laser wakefields characterized by spectral x-ray analysis. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  C. Wahlström,et al.  Laser-wakefield acceleration of monoenergetic electron beams in the first plasma-wave period. , 2006, Physical review letters.

[22]  G Swift,et al.  Parity measurements of nuclear levels using a free-electron-laser generated gamma-ray beam. , 2001, Physical review letters.

[23]  F. Hartemann,et al.  Isotope-specific detection of low-density materials with laser-based monoenergetic gamma-rays. , 2010, Optics letters.

[24]  H. J. Lee,et al.  Electronic structure of warm dense copper studied by ultrafast x-ray absorption spectroscopy. , 2011, Physical review letters.

[25]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[26]  F. Hartemann,et al.  Precision linac and laser technologies for nuclear photonics gamma-ray sourcesa) , 2012 .

[27]  M. Wolf,et al.  Real-Time Observation of Surface Bond Breaking with an X-ray Laser , 2013, Science.

[28]  S Fourmaux,et al.  Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge x-ray absorption. , 2005, Physical review letters.

[29]  A Pak,et al.  Injection and trapping of tunnel-ionized electrons into laser-produced wakes. , 2009, Physical review letters.

[30]  I. L. Morgan,et al.  Application of Accelerators in Research and Industry , 1997 .

[31]  S. Wilkins,et al.  Contrast and resolution in imaging with a microfocus x-ray source , 1997 .

[32]  Shuoqin Wang,et al.  X-ray emission from betatron motion in a plasma wiggler. , 2002, Physical review letters.

[33]  J. Vieira,et al.  Influence of realistic parameters on state-of-the-art laser wakefield accelerator experiments , 2012, 1204.1170.

[34]  Frank Seiboth,et al.  Developing a platform for high-resolution phase contrast imaging of high pressure shock waves in matter , 2012, Other Conferences.

[35]  S. Kneip,et al.  Controlling the spectrum of x-rays generated in a laser-plasma accelerator by tailoring the laser wavefront , 2009, 0909.3440.

[36]  Y. Glinec,et al.  Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses , 2006, Nature.

[37]  Michael Schnell,et al.  Deducing the electron-beam diameter in a laser-plasma accelerator using x-ray betatron radiation. , 2012, Physical review letters.

[38]  O. Bunk,et al.  Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources , 2006 .

[39]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[40]  A. Ravasio,et al.  X-ray diagnosis of the pressure induced Mott nonmetal-metal transition. , 2012, Physical review letters.

[41]  A. Dangor,et al.  Observation of a hot high-current electron beam from a self-modulated laser wakefield accelerator. , 2001, Physical review letters.

[42]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[43]  Stephen E. Korbly,et al.  Nuclear resonance fluorescence and effective Z determination applied to detection and imaging of special nuclear material, explosives, toxic substances and contraband , 2007 .

[44]  C De Wagter,et al.  Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator. , 2012, Medical physics.

[45]  Dong Eon Kim,et al.  Demonstration of the ultrafast nature of laser produced betatron radiation , 2007 .

[46]  S. Chen,et al.  MeV-energy x rays from inverse compton scattering with laser-wakefield accelerated electrons. , 2013, Physical review letters.

[47]  G. Lambert,et al.  Femtosecond x rays from laser-plasma accelerators , 2013, 1301.5066.

[48]  A. Momose Recent Advances in X-ray Phase Imaging , 2005 .

[49]  George Zentai X-ray imaging for homeland security , 2010 .

[50]  Alex Murokh,et al.  Inverse compton scattering gamma ray source , 2009 .

[51]  David N. Payne,et al.  High-Power Fiber Lasers , 2011, Science.

[52]  David A. Hammer,et al.  Phase-contrast x-ray radiography using the X pinch radiation , 2001, SPIE Optics + Photonics.

[53]  Zulfikar Najmudin,et al.  Bright spatially coherent synchrotron X-rays from a table-top source , 2010 .

[54]  G. Kyrala,et al.  Applications of X rays generated from lasers and other bright sources II : 30-31 July 2001, San Diego, USA , 1997 .

[55]  Karl Krushelnick,et al.  Betatron x-ray generation from electrons accelerated in a plasma cavity in the presence of laser fields , 2009 .

[56]  S. Boutet,et al.  Femtosecond Visualization of Lattice Dynamics in Shock-Compressed Matter , 2013, Science.

[57]  Erik Lefebvre,et al.  Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator , 2011 .

[58]  E. Esarey,et al.  Betatron radiation from electron beams in plasma focusing channels , 2000 .

[59]  W. Burcham Progress in Nuclear Physics , 1954, Nature.

[60]  K. Seth,et al.  Progress in Nuclear Physics , 1958 .

[61]  Alexander Pukhov,et al.  Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons , 2004 .

[62]  G. Malka,et al.  Electron Acceleration by a Wake Field Forced by an Intense Ultrashort Laser Pulse , 2002, Science.

[63]  Klaus Attenkofer,et al.  Development of high-repetition-rate laser pump/x-ray probe methodologies for synchrotron facilities. , 2011, The Review of scientific instruments.

[64]  V. Malka,et al.  Cold optical injection producing monoenergetic, multi-GeV electron bunches. , 2009, Physical review letters.

[65]  R Lewis,et al.  Medical applications of synchrotron radiation x-rays. , 1997, Physics in medicine and biology.

[66]  D. S. Montgomery,et al.  Phase-contrast imaging using ultrafast x-rays in laser-shocked materials. , 2010, The Review of scientific instruments.

[67]  Z. S. Wang,et al.  First lasing of an echo-enabled harmonic generation free-electron laser , 2012, Nature Photonics.

[68]  Richard Kowalczyk,et al.  Nonlinear Thomson scattering: A tutorial , 2003 .

[69]  Compact laser accelerators for X-ray phase-contrast imaging , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[70]  Antoine Rousse,et al.  Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. , 2004, Physical review letters.

[71]  J. Cary,et al.  Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. , 2008, Physical review letters.

[72]  Ferenc Krausz,et al.  Laser-driven soft-X-ray undulator source , 2009 .

[73]  R. P. Drake,et al.  High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics , 2006 .

[74]  Kentaro Uesugi,et al.  X-ray refraction-enhanced imaging and a method for phase retrieval for a simple object. , 2002, Journal of synchrotron radiation.

[75]  A Pak,et al.  Angular dependence of betatron x-ray spectra from a laser-wakefield accelerator. , 2013, Physical review letters.

[76]  C. Liu,et al.  Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source , 2013, Nature Photonics.

[77]  V Malka,et al.  Controlled betatron x-ray radiation from tunable optically injected electrons. , 2011, Physical review letters.

[78]  S. G. Anderson,et al.  Characterization and applications of a tunable, laser-based, MeV-class Compton-scattering γ -ray source , 2010 .

[79]  Michael Schnell,et al.  Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator , 2013, Nature Communications.

[80]  P. G. Thirolf,et al.  Vision of nuclear physics with photo-nuclear reactions by laser-driven $\sf \gamma$ beams , 2009 .

[81]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[82]  K. Ta Phuoc,et al.  Coherence-based transverse measurement of synchrotron x-ray radiation from relativistic laser-plasma interaction and of laser-accelerated electrons , 2006, 2007 Quantum Electronics and Laser Science Conference.

[83]  A. Sehara-Fujisawa,et al.  Bmc Biology the Vertebrate Phylotypic Stage and an Early Bilaterian-related Stage in Mouse Embryogenesis Defined by Genomic Information , 2007 .

[84]  Zulfikar Najmudin,et al.  Observation of Electron Energies Beyond the Linear Dephasing Limit from a Laser-Excited Relativistic Plasma Wave , 1998 .

[85]  I. V. Glazyrin,et al.  Ionization induced trapping in a laser wakefield accelerator. , 2009, Physical review letters.

[86]  Gerard Mourou,et al.  More Intense, Shorter Pulses , 2011, Science.

[87]  K. Ta Phuoc,et al.  Scaling of betatron X-ray radiation , 2007 .

[88]  Garth J. Williams,et al.  Serial Femtosecond Crystallography of G Protein–Coupled Receptors , 2013, Science.

[89]  Zulfikar Najmudin,et al.  Plasma Wave Generation in a Self-Focused Channel of a Relativistically Intense Laser Pulse , 1998 .

[90]  J Osterhoff,et al.  All-optical steering of laser-wakefield-accelerated electron beams. , 2010, Physical review letters.

[91]  D. Habs,et al.  Production of medical radioisotopes with high specific activity in photonuclear reactions with γ-beams of high intensity and large brilliance , 2010, 1008.5336.

[92]  A. Rousse,et al.  Imaging Electron Trajectories in Laser Wakefield Cavity using betatron X-Ray Radiation , 2006, 2007 Conference on Lasers and Electro-Optics (CLEO).

[93]  N. Guerineau,et al.  X-ray phase contrast imaging using a broadband X-ray beam and a single phase grating used in its achromatic and propagation-invariant regime , 2013 .

[94]  M. G. Belcastro,et al.  Age Estimation by Pulp/Tooth Ratio in Canines by Peri‐Apical X‐Rays , 2007, Journal of forensic sciences.

[95]  B. Adams,et al.  Picosecond X-ray absorption measurements of the ligand substitution dynamics of Fe(CO)5 in ethanol. , 2011, Physical chemistry chemical physics : PCCP.

[96]  Zhi‐zhan Xu,et al.  All-optical cascaded laser wakefield accelerator using ionization-induced injection. , 2011, Physical review letters.

[97]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[98]  F Dorchies,et al.  Unraveling the solid-liquid-vapor phase transition dynamics at the atomic level with ultrafast x-ray absorption near-edge spectroscopy. , 2011, Physical review letters.

[99]  V. Shiltsev High-energy particle colliders: past 20 years, next 20 years, and beyond , 2012, 1205.3087.

[100]  S. Leake,et al.  A technique for high-frequency laser-pump X-ray probe experiments at the APS , 2011 .

[101]  E. Esarey,et al.  Synchrotron radiation from electron beams in plasma-focusing channels. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[102]  Z. Najmudin,et al.  Characterization of transverse beam emittance of electrons from a laser-plasma wakefield accelerator in the bubble regime using betatron x-ray radiation , 2011, 1105.5559.

[103]  J. Chalupský,et al.  Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser , 2012, Nature.

[104]  T Shimada,et al.  Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source. , 2012, The Review of scientific instruments.

[105]  Eric Esarey,et al.  Electron Injection into Plasma Wake Fields by Colliding Laser Pulses , 1997 .

[106]  A Pak,et al.  Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. , 2010, Physical review letters.

[107]  V. B. Pathak,et al.  Magnetic control of particle injection in plasma based accelerators. , 2011, Physical review letters.

[109]  Sébastien Boutet,et al.  De novo protein crystal structure determination from X-ray free-electron laser data , 2013, Nature.

[110]  M. Tzoufras,et al.  Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime , 2007 .

[111]  C. Thaury,et al.  Angular-momentum evolution in laser-plasma accelerators. , 2013, Physical review letters.

[112]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .

[113]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[114]  Gilbert W. Collins,et al.  Solid iron compressed up to 560 GPa. , 2013, Physical review letters.

[115]  V Malka,et al.  Optical transverse injection in laser-plasma acceleration. , 2013, Physical review letters.

[116]  V Malka,et al.  Single shot phase contrast imaging using laser-produced Betatron x-ray beams. , 2011, Optics letters.

[117]  Alexander Thomas,et al.  Scalings for radiation from plasma bubbles , 2010 .

[118]  Rafael Abela,et al.  Observing photochemical transients by ultrafast x-ray absorption spectroscopy. , 2003, Physical review letters.

[119]  Eric Esarey,et al.  Tunable laser plasma accelerator based on longitudinal density tailoring , 2011 .

[120]  A. H. Compton A Quantum Theory of the Scattering of X-rays by Light Elements , 1923 .

[121]  Wah-Keat Lee,et al.  Real-time phase-contrast x-ray imaging: a new technique for the study of animal form and function , 2007, BMC Biology.

[122]  A. E. Dangor,et al.  Electron acceleration from the breaking of relativistic plasma waves , 1995, Nature.