The Hallmarks of Cancer Revisited Through Systems Biology and Network Modelling

Since 10 years ago, when the seven hallmarks of cancer were first defined by Hanahan and Weinberg, after decades of molecular, cellular and clinical investigations, new systems-based approaches have provided a wide range of improved investigative methods. These approaches integrate various global data types into mathematical and computational models of molecular and cellular pathways and networks that become dysregulated in cancer, since the models are now able to take into account the large-scale properties of complex biological networks. Genome variation and instability have been revisited through study of genetic and genomic networks; while transcription and protein interaction networks are revealing cancer biomarkers of modular change. Growth, proliferation and apoptosis are being more fully described by signalling network modelling. Sustained angiogenesis and metastasis are being addressed via multiscale modelling. Enhanced understanding of the initial hallmarks of cancer, extended to the control of metabolism and stress, is opening novel avenues for cancer diagnosis and treatment. It is fully expected that further progress will take place through iterative cycles of experimentation and modelling, typical of systems biology. All of this will require advances in molecular data acquisition, multiscale integration of data scales and types, new approaches to data analysis and improved modelling. Success in all these endeavours cannot be achieved without better cross-disciplinary interactions among researchers and technologists.

[1]  Ji Luo,et al.  Cancer Proliferation Gene Discovery Through Functional Genomics , 2008, Science.

[2]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[3]  Jeong-Rae Kim,et al.  Inferring biomolecular regulatory networks from phase portraits of time‐series expression profiles , 2006, FEBS letters.

[4]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[5]  D. Cleveland,et al.  Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis , 2009, Nature Reviews Molecular Cell Biology.

[6]  P. Maini,et al.  Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer , 2007, Proceedings of the National Academy of Sciences.

[7]  Simo V. Zhang,et al.  A map of human cancer signaling , 2007, Molecular systems biology.

[8]  Alvis Brazma,et al.  Modelling gene networks at different organisational levels , 2005, FEBS letters.

[9]  David Warde-Farley,et al.  Dynamic modularity in protein interaction networks predicts breast cancer outcome , 2009, Nature Biotechnology.

[10]  A. Barabasi,et al.  Network medicine--from obesity to the "diseasome". , 2007, The New England journal of medicine.

[11]  L. Hood,et al.  A Genomic Regulatory Network for Development , 2002, Science.

[12]  Martin Vingron,et al.  A systems biological approach suggests that transcriptional feedback regulation by dual‐specificity phosphatase 6 shapes extracellular signal‐related kinase activity in RAS‐transformed fibroblasts , 2009, The FEBS journal.

[13]  Rakesh Nagarajan,et al.  Computational identification of the normal and perturbed genetic networks involved in myeloid differentiation and acute promyelocytic leukemia , 2008, Genome Biology.

[14]  R. Sun,et al.  Closed-loop control of cellular functions using combinatory drugs guided by a stochastic search algorithm , 2008, Proceedings of the National Academy of Sciences.

[15]  Bernhard Ø Palsson,et al.  Understanding human metabolic physiology: a genome-to-systems approach. , 2009, Trends in biotechnology.

[16]  J. Weinstein,et al.  Biomarkers in Cancer Staging, Prognosis and Treatment Selection , 2005, Nature Reviews Cancer.

[17]  Ralph J Deberardinis,et al.  Brick by brick: metabolism and tumor cell growth. , 2008, Current opinion in genetics & development.

[18]  P. Sorger,et al.  Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis , 2009, Nature.

[19]  L. Hood,et al.  Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. , 2008, Medical hypotheses.

[20]  H. Westerhoff,et al.  Recurrent design patterns in the feedback regulation of the mammalian signalling network , 2008, Molecular systems biology.

[21]  Elaine Holmes,et al.  The challenges of modeling mammalian biocomplexity , 2004, Nature Biotechnology.

[22]  Eyal Gottlieb,et al.  Metabolic transformation in cancer. , 2009, Carcinogenesis.

[23]  G. Parmigiani,et al.  Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses , 2008, Science.

[24]  Edward C Stites,et al.  Network Analysis of Oncogenic Ras Activation in Cancer , 2007, Science.

[25]  C. Sawyers The cancer biomarker problem , 2008, Nature.

[26]  D-M Hu,et al.  Time-dependent sensitivity analysis of biological networks: coupled MAPK and PI3K signal transduction pathways. , 2006, The journal of physical chemistry. A.

[27]  G. Friedlander,et al.  Regulation of gene expression by small non-coding RNAs: a quantitative view , 2007, Molecular systems biology.

[28]  Mark Gerstein,et al.  Systematic analysis of transcribed loci in ENCODE regions using RACE sequencing reveals extensive transcription in the human genome , 2008, Genome Biology.

[29]  T. Seyfried,et al.  Cancer as a metabolic disease , 2010, Nutrition & metabolism.

[30]  Robin Mathew,et al.  Role of autophagy in cancer , 2007, Nature Reviews Cancer.

[31]  P. Shannon,et al.  Analysis of Genetic Inheritance in a Family Quartet by Whole-Genome Sequencing , 2010, Science.

[32]  Neil J Ganem,et al.  Tetraploidy, aneuploidy and cancer. , 2007, Current opinion in genetics & development.

[33]  K. Basso,et al.  A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas , 2008, Molecular systems biology.

[34]  O. Demin,et al.  The Edinburgh human metabolic network reconstruction and its functional analysis , 2007, Molecular systems biology.

[35]  Atul J Butte,et al.  The Ultimate Model Organism , 2008, Science.

[36]  Charles Auffray,et al.  Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics. , 2008, Progress in biophysics and molecular biology.

[37]  Bernhard O. Palsson,et al.  Iterative Reconstruction of Transcriptional Regulatory Networks: An Algorithmic Approach , 2006, PLoS Comput. Biol..

[38]  Barbara M. Bakker,et al.  Metabolic control analysis to identify optimal drug targets. , 2007, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[39]  Christina Yau,et al.  Ageing, oxidative stress and cancer: paradigms in parallax , 2008, Nature Reviews Cancer.

[40]  William J. Bosl,et al.  Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery , 2007, BMC Systems Biology.

[41]  Jeffrey T. Chang,et al.  A genomic strategy to elucidate modules of oncogenic pathway signaling networks. , 2009, Molecular cell.

[42]  Erwin P. Gianchandani,et al.  Systems analyses characterize integrated functions of biochemical networks. , 2006, Trends in biochemical sciences.

[43]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[44]  Angelika Amon,et al.  Aneuploidy Affects Proliferation and Spontaneous Immortalization in Mammalian Cells , 2008, Science.

[45]  Pedro de Atauri,et al.  Metabolic control analysis in drug discovery and disease , 2002, Nature Biotechnology.

[46]  John T. Wei,et al.  Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. , 2005, Cancer cell.

[47]  Gudmundur A. Thorisson,et al.  Genotype–phenotype databases: challenges and solutions for the post-genomic era , 2009, Nature Reviews Genetics.

[48]  Erwin P. Gianchandani,et al.  Flux balance analysis in the era of metabolomics , 2006, Briefings Bioinform..

[49]  Douglas A Lauffenburger,et al.  RAS mutations affect tumor necrosis factor-induced apoptosis in colon carcinoma cells via ERK-modulatory negative and positive feedback circuits along with non-ERK pathway effects. , 2009, Cancer research.

[50]  Simon Kasif,et al.  Biological context networks: a mosaic view of the interactome , 2006, Molecular Systems Biology.

[51]  Paula D. Bos,et al.  Metastasis: from dissemination to organ-specific colonization , 2009, Nature Reviews Cancer.

[52]  Angelika Amon,et al.  Aneuploidy: Cells Losing Their Balance , 2008, Genetics.

[53]  Zhi Hu,et al.  Integrated analysis of breast cancer cell lines reveals unique signaling pathways , 2009, Genome Biology.

[54]  John J. Tyson,et al.  Temporal Organization of the Cell Cycle , 2008, Current Biology.

[55]  Jiri Bartek,et al.  An Oncogene-Induced DNA Damage Model for Cancer Development , 2008, Science.

[56]  M. Bizzarri,et al.  Beyond the Oncogene Paradigm: Understanding Complexity in Cancerogenesis , 2008, Acta biotheoretica.

[57]  Marta Cascante,et al.  Metabolomics and fluxomics approaches. , 2008, Essays in biochemistry.

[58]  Richard Bonneau,et al.  Learning global models of transcriptional regulatory networks from data. , 2009, Methods in molecular biology.

[59]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[60]  T. Deisboeck,et al.  Simulating non-small cell lung cancer with a multiscale agent-based model , 2007, Theoretical Biology and Medical Modelling.

[61]  D. Lauffenburger,et al.  Multipathway Model Enables Prediction of Kinase Inhibitor Cross-Talk Effects on Migration of Her2-Overexpressing Mammary Epithelial Cells , 2008, Molecular Pharmacology.

[62]  M. Tewari,et al.  The Limits of Reductionism in Medicine: Could Systems Biology Offer an Alternative? , 2006, PLoS medicine.

[63]  Marc W Kirschner,et al.  The Meaning of Systems Biology , 2005, Cell.

[64]  A. Ullrich,et al.  Paul Ehrlich's magic bullet concept: 100 years of progress , 2008, Nature Reviews Cancer.

[65]  A. Citri,et al.  EGF–ERBB signalling: towards the systems level , 2006, Nature Reviews Molecular Cell Biology.

[66]  B. Zhivotovsky,et al.  Mitochondria in cancer cells: what is so special about them? , 2008, Trends in cell biology.

[67]  S. McDougall,et al.  Mathematical modeling of tumor-induced angiogenesis. , 2006, Annual review of biomedical engineering.

[68]  L. Hood,et al.  A data integration methodology for systems biology: experimental verification. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  J. Hoeijmakers,et al.  DNA damage and ageing: new-age ideas for an age-old problem , 2008, Nature Cell Biology.

[70]  Ji Luo,et al.  Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction , 2009, Cell.

[71]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[72]  Alan Ashworth,et al.  Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy , 2005, Nature.

[73]  Wei Keat Lim,et al.  The transcriptional network for mesenchymal transformation of brain tumors , 2009, Nature.

[74]  K. Gunsalus,et al.  Network modeling links breast cancer susceptibility and centrosome dysfunction. , 2007, Nature genetics.

[75]  I. Weinstein Addiction to Oncogenes--the Achilles Heal of Cancer , 2002, Science.

[76]  V. Grantcharova,et al.  Therapeutically Targeting ErbB3: A Key Node in Ligand-Induced Activation of the ErbB Receptor–PI3K Axis , 2009, Science Signaling.

[77]  Brian H. Dunford-Shore,et al.  Somatic mutations affect key pathways in lung adenocarcinoma , 2008, Nature.

[78]  Zhihui Wang,et al.  Cross-scale, cross-pathway evaluation using an agent-based non-small cell lung cancer model , 2009, Bioinform..

[79]  Alberto Mantovani,et al.  Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. , 2009, Carcinogenesis.

[80]  R. Weinberg,et al.  The Biology of Cancer , 2006 .

[81]  M. L. Martins,et al.  Reaction-diffusion model for the growth of avascular tumor. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  Judit Ovádi,et al.  On the origin of intracellular compartmentation and organized metabolic systems , 2004, Molecular and Cellular Biochemistry.

[83]  Amy K. Schmid,et al.  A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell , 2007, Cell.

[84]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[85]  S. Lindquist,et al.  HSP90 and the chaperoning of cancer , 2005, Nature Reviews Cancer.

[86]  P. Bork,et al.  Systematic Discovery of In Vivo Phosphorylation Networks , 2007, Cell.

[87]  D. Noble Modeling the Heart--from Genes to Cells to the Whole Organ , 2002, Science.

[88]  D. Noble Claude Bernard, the first systems biologist, and the future of physiology , 2008, Experimental physiology.

[89]  Denis Noble,et al.  The Cardiac Physiome: perspectives for the future , 2009, Experimental physiology.

[90]  P. Carroll,et al.  Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention , 2008, Proceedings of the National Academy of Sciences.

[91]  Stephen J. Elledge,et al.  Profiling Essential Genes in Human Mammary Cells by Multiplex RNAi Screening , 2008, Science.

[92]  R. Sharan,et al.  Protein networks in disease. , 2008, Genome research.

[93]  J. Nevins,et al.  Linking oncogenic pathways with therapeutic opportunities , 2006, Nature Reviews Cancer.

[94]  Jeffrey T. Chang,et al.  Oncogenic pathway signatures in human cancers as a guide to targeted therapies , 2006, Nature.

[95]  James J Collins,et al.  Systems biology makes it personal. , 2009, Molecular cell.

[96]  Ross Tubo,et al.  Mesenchymal stem cells within tumour stroma promote breast cancer metastasis , 2007, Nature.

[97]  Richard Bonneau,et al.  The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo , 2006, Genome Biology.

[98]  M. Girolami,et al.  Identification of prognostic signatures in breast cancer microarray data using Bayesian techniques , 2006, Journal of The Royal Society Interface.

[99]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[100]  T. Ideker,et al.  A new approach to decoding life: systems biology. , 2001, Annual review of genomics and human genetics.

[101]  Dimitris Kletsas,et al.  Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions , 2005, Nature.

[102]  J. Tyson,et al.  Design principles of biochemical oscillators , 2008, Nature Reviews Molecular Cell Biology.

[103]  Kathy Chen,et al.  Network dynamics and cell physiology , 2001, Nature Reviews Molecular Cell Biology.

[104]  S. Kauffman,et al.  Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. , 2009, Seminars in cell & developmental biology.

[105]  Neema Jamshidi,et al.  A genome-scale, constraint-based approach to systems biology of human metabolism. , 2007, Molecular bioSystems.

[106]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[107]  Liming Yang,et al.  A loss-of-function RNA interference screen for molecular targets in cancer , 2006, Nature.

[108]  R. Milo,et al.  Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[109]  P. Shannon,et al.  Evidence for the presence of disease-perturbed networks in prostate cancer cells by genomic and proteomic analyses: a systems approach to disease. , 2005, Cancer research.

[110]  J Wade Harper,et al.  The DNA damage response: ten years after. , 2007, Molecular cell.

[111]  Charles Auffray,et al.  Deciphering cellular states of innate tumor drug responses , 2006, Genome Biology.

[112]  Jason A. Papin,et al.  Applications of genome-scale metabolic reconstructions , 2009, Molecular systems biology.

[113]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[114]  Charles Auffray,et al.  Protein subnetwork markers improve prediction of cancer outcome , 2007, Molecular systems biology.

[115]  Richard Bonneau Learning biological networks: from modules to dynamics. , 2008, Nature chemical biology.

[116]  E. Davidson,et al.  Global regulatory logic for specification of an embryonic cell lineage , 2008, Proceedings of the National Academy of Sciences.

[117]  Christopher L. McClendon,et al.  Reaching for high-hanging fruit in drug discovery at protein–protein interfaces , 2007, Nature.

[118]  Olaf Wolkenhauer,et al.  Systems biologists seek fuller integration of systems biology approaches in new cancer research programs. , 2010, Cancer research.

[119]  D. Lauffenburger,et al.  Physicochemical modelling of cell signalling pathways , 2006, Nature Cell Biology.

[120]  Joshua F. McMichael,et al.  Genome Remodeling in a Basal-like Breast Cancer Metastasis and Xenograft , 2010, Nature.

[121]  Krin A. Kay,et al.  The implications of human metabolic network topology for disease comorbidity , 2008, Proceedings of the National Academy of Sciences.

[122]  Jens Timmer,et al.  Systems-level interactions between insulin–EGF networks amplify mitogenic signaling , 2009, Molecular systems biology.

[123]  Amy E. Hawkins,et al.  DNA sequencing of a cytogenetically normal acute myeloid leukemia genome , 2008, Nature.

[124]  Mark W. Dewhirst,et al.  Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response , 2008, Nature Reviews Cancer.

[125]  L. Hood,et al.  Systems medicine: the future of medical genomics and healthcare , 2009, Genome Medicine.

[126]  T. Barrette,et al.  Probabilistic model of the human protein-protein interaction network , 2005, Nature Biotechnology.

[127]  Stefan Bornholdt,et al.  Topology of biological networks and reliability of information processing , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[128]  T. Pawson,et al.  Oncogenic re-wiring of cellular signaling pathways , 2007, Oncogene.

[129]  Charles Auffray,et al.  A Functional and Regulatory Network Associated with PIP Expression in Human Breast Cancer , 2009, PloS one.

[130]  Guido Kroemer,et al.  Tumor cell metabolism: cancer's Achilles' heel. , 2008, Cancer cell.

[131]  J. Pouysségur,et al.  Hypoxia signalling in cancer and approaches to enforce tumour regression , 2006, Nature.

[132]  Jason A. Papin,et al.  Metabolic pathways in the post-genome era. , 2003, Trends in biochemical sciences.

[133]  P. Comoglio,et al.  The Met pathway: master switch and drug target in cancer progression , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[134]  Dimitris Kletsas,et al.  Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints , 2006, Nature.

[135]  Peter Oster,et al.  Effects of metabolic control, patient education and initiation of insulin therapy on the quality of life of patients with type 2 diabetes mellitus. , 2008, Patient education and counseling.

[136]  Hamid Bolouri,et al.  A data integration methodology for systems biology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[137]  E. Fraenkel,et al.  Integrating Proteomic, Transcriptional, and Interactome Data Reveals Hidden Components of Signaling and Regulatory Networks , 2009, Science Signaling.

[138]  Weiping Zou,et al.  Immunosuppressive networks in the tumour environment and their therapeutic relevance , 2005, Nature Reviews Cancer.

[139]  Alissa M. Weaver,et al.  Tumor Morphology and Phenotypic Evolution Driven by Selective Pressure from the Microenvironment , 2006, Cell.

[140]  Tony Pawson,et al.  Comparative Analysis Reveals Conserved Protein Phosphorylation Networks Implicated in Multiple Diseases , 2009, Science Signaling.

[141]  E. Birney,et al.  Patterns of somatic mutation in human cancer genomes , 2007, Nature.

[142]  Olaf Wolkenhauer,et al.  Report on EU–USA Workshop: How Systems Biology Can Advance Cancer Research (27 October 2008) , 2009, Molecular oncology.

[143]  Inyoul Y. Lee,et al.  A systems approach to prion disease , 2009, Molecular systems biology.

[144]  Steffen Klamt,et al.  The Logic of EGFR/ErbB Signaling: Theoretical Properties and Analysis of High-Throughput Data , 2009, PLoS Comput. Biol..

[145]  Douglas A Lauffenburger,et al.  Quantitative modeling perspectives on the ErbB system of cell regulatory processes. , 2008, Experimental cell research.

[146]  Michael B. Yaffe,et al.  Data-driven modelling of signal-transduction networks , 2006, Nature Reviews Molecular Cell Biology.

[147]  Olaf Wolkenhauer,et al.  Systems Biology: the Reincarnation of Systems Theory Applied in Biology? , 2001, Briefings Bioinform..

[148]  W. Kaelin The Concept of Synthetic Lethality in the Context of Anticancer Therapy , 2005, Nature Reviews Cancer.

[149]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[150]  R. Bernards,et al.  Enabling personalized cancer medicine through analysis of gene-expression patterns , 2008, Nature.

[151]  Michael E Phelps,et al.  Systems Biology and New Technologies Enable Predictive and Preventative Medicine , 2004, Science.

[152]  D. Noble,et al.  Systems biology and the virtual physiological human , 2009, Molecular systems biology.

[153]  H. Byrne Dissecting cancer through mathematics: from the cell to the animal model , 2010, Nature Reviews Cancer.

[154]  C. Auffray,et al.  Scale relativity theory and integrative systems biology: 1. Founding principles and scale laws. , 2008, Progress in biophysics and molecular biology.

[155]  D. Ransohoff,et al.  Sources of bias in specimens for research about molecular markers for cancer. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[156]  Jelena Pjesivac-Grbovic,et al.  A multiscale model for avascular tumor growth. , 2005, Biophysical journal.

[157]  A. Chinnaiyan,et al.  Integrative analysis of the cancer transcriptome , 2005, Nature Genetics.

[158]  Charles Auffray,et al.  Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[159]  David J. Galas,et al.  Markov Logic Networks in the Analysis of Genetic Data , 2010, J. Comput. Biol..

[160]  Liang Tong,et al.  Targeting the Human Cancer Pathway Protein Interaction Network by Structural Genomics* , 2008, Molecular & Cellular Proteomics.

[161]  G. Tonon,et al.  From oncogene to network addiction: the new frontier of cancer genomics and therapeutics. , 2008, Future oncology.

[162]  Charles Auffray,et al.  Coordination of intrinsic, extrinsic, and endoplasmic reticulum-mediated apoptosis by imatinib mesylate combined with arsenic trioxide in chronic myeloid leukemia. , 2005, Blood.

[163]  M. Tewari,et al.  The Clinical Applications of a Systems Approach , 2006, PLoS medicine.

[164]  Irving L. Weissman,et al.  Association of reactive oxygen species levels and radioresistance in cancer stem cells , 2009, Nature.

[165]  Didier Bresch,et al.  A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. , 2009, Journal of theoretical biology.

[166]  Michael L. Creech,et al.  Integration of biological networks and gene expression data using Cytoscape , 2007, Nature Protocols.

[167]  David J Foran,et al.  Therapeutic starvation and autophagy in prostate cancer: A new paradigm for targeting metabolism in cancer therapy , 2008, The Prostate.

[168]  Gilles Clermont,et al.  Bridging the gap between systems biology and medicine , 2009, Genome Medicine.

[169]  B. Palsson,et al.  The evolution of molecular biology into systems biology , 2004, Nature Biotechnology.

[170]  Mark Gerstein,et al.  Network Modeling Identifies Molecular Functions Targeted by miR-204 to Suppress Head and Neck Tumor Metastasis , 2010, PLoS Comput. Biol..

[171]  G. Song,et al.  Role of hypoxia in the hallmarks of human cancer , 2009, Journal of cellular biochemistry.

[172]  Gilles Clermont,et al.  BMC Systems Biology , 2022 .

[173]  Julio Saez-Rodriguez,et al.  Fuzzy Logic Analysis of Kinase Pathway Crosstalk in TNF/EGF/Insulin-Induced Signaling , 2007, PLoS Comput. Biol..

[174]  S. Elledge,et al.  Non-Oncogene Addiction and the Stress Phenotype of Cancer Cells , 2007, Cell.

[175]  V. Quaranta,et al.  Integrative mathematical oncology , 2008, Nature Reviews Cancer.

[176]  K. Kinzler,et al.  Cancer genes and the pathways they control , 2004, Nature Medicine.

[177]  David F Ransohoff,et al.  Promises and limitations of biomarkers. , 2009, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[178]  Charles Auffray,et al.  From functional genomics to systems biology: concepts and practices. , 2003, Comptes rendus biologies.

[179]  Robert A Beckman,et al.  Genetic instability in cancer: theory and experiment. , 2005, Seminars in cancer biology.

[180]  Ignacio Ramis-Conde,et al.  Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis , 2009, Physical biology.

[181]  G. Bhanot,et al.  Autophagy Suppresses Tumorigenesis through Elimination of p62 , 2009, Cell.

[182]  Marta Cascante,et al.  Metabolic profiling of cell growth and death in cancer: applications in drug discovery. , 2002, Drug discovery today.

[183]  Alan Ashworth,et al.  Bringing DNA Repair in Tumors into Focus , 2009, Clinical Cancer Research.

[184]  S. McDougall,et al.  Multiscale modelling and nonlinear simulation of vascular tumour growth , 2009, Journal of mathematical biology.

[185]  Pamela K. Kreeger,et al.  Cancer systems biology: a network modeling perspective , 2009, Carcinogenesis.

[186]  Izhak Haviv,et al.  Co-evolution of tumor cells and their microenvironment. , 2009, Trends in genetics : TIG.

[187]  John T. Wei,et al.  Integrative molecular concept modeling of prostate cancer progression , 2007, Nature Genetics.

[188]  H. Kotani,et al.  Can Systems Biology Understand Pathway Activation? Gene Expression Signatures as Surrogate Markers for Understanding the Complexity of Pathway Activation , 2008, Current genomics.

[189]  Charles Auffray,et al.  Origins of Systems Biology in William Harvey’s Masterpiece on the Movement of the Heart and the Blood in Animals , 2009, International journal of molecular sciences.

[190]  Kornelia Polyak,et al.  Microenvironmental regulation of cancer development. , 2008, Current opinion in genetics & development.

[191]  A. Barabasi,et al.  Cancer metastasis networks and the prediction of progression patterns , 2009, British Journal of Cancer.

[192]  Hongbin Sun,et al.  Metabolic targeting of cancers: from molecular mechanisms to therapeutic strategies. , 2009, Current medicinal chemistry.

[193]  J. Folkman Opinion: Angiogenesis: an organizing principle for drug discovery? , 2007, Nature Reviews Drug Discovery.

[194]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[195]  K. Kinzler,et al.  Gene expression analysis goes digital , 2007, Nature Biotechnology.

[196]  E. Zerhouni Translational and clinical science--time for a new vision. , 2005, The New England journal of medicine.

[197]  M. Vidal,et al.  Interactome: gateway into systems biology. , 2005, Human molecular genetics.

[198]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[199]  David J. Galas,et al.  Maximal Extraction of Biological Information from Genetic Interaction Data , 2009, PLoS Comput. Biol..

[200]  D. Fell Enzymes, metabolites and fluxes. , 2004, Journal of experimental botany.