Reduction to a Single Closed Equation for 2-by-2 Reaction-Diffusion Systems of Lotka-Volterra Type

We consider general models of coupled reaction-diffusion systems for interacting variants of a species. When the total population becomes large with intensive competition, we prove that the frequency (i.e., proportion) of a variant can be approached by the solution of a single reaction-diffusion equation, through a singular limit method and a relative compactness argument. Applying this result, we retrieve the classical bistable equation for Wolbachia's spread into an arthropod population from a system modeling interaction between infected and uninfected individuals.

[1]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[2]  Karyn N. Johnson,et al.  Solving the Wolbachia Paradox: Modeling the Tripartite Interaction between Host, Wolbachia, and a Natural Enemy , 2011, The American Naturalist.

[3]  Joshua G Schraiber,et al.  Constraints on the use of lifespan-shortening Wolbachia to control dengue fever. , 2012, Journal of theoretical biology.

[4]  T. Nagylaki,et al.  Conditions for the existence of clines. , 1975, Genetics.

[5]  D. Hilhorst,et al.  Relative compactness in $L^p$ of solutions of some 2m components competition-diffusion systems , 2008 .

[6]  J. Werren,et al.  Wolbachia: master manipulators of invertebrate biology , 2008, Nature Reviews Microbiology.

[7]  Vitaly Volpert,et al.  Traveling Wave Solutions of Parabolic Systems , 1994 .

[8]  R. Maciel-de-Freitas,et al.  From Lab to Field: The Influence of Urban Landscapes on the Invasive Potential of Wolbachia in Brazilian Aedes aegypti Mosquitoes , 2015, PLoS neglected tropical diseases.

[9]  B. Perthame Parabolic Equations in Biology , 2015 .

[10]  S. AbuBakar,et al.  Distribution and dynamics of Wolbachia infection in Malaysian Aedes albopictus. , 2015, Acta tropica.

[11]  Vitaly Volpert,et al.  Traveling-wave solutions of parabolic systems with discontinuous nonlinear terms , 2002 .

[12]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[13]  Peter S Kim,et al.  Modelling a Wolbachia Invasion Using a Slow–Fast Dispersal Reaction–Diffusion Approach , 2013, Bulletin of mathematical biology.

[15]  Hernán G. Solari,et al.  A Stochastic Spatial Dynamical Model for Aedes Aegypti , 2008, Bulletin of mathematical biology.

[16]  Peter A. Ryan,et al.  A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium , 2009, Cell.

[17]  N. Barton,et al.  Spatial Waves of Advance with Bistable Dynamics: Cytoplasmic and Genetic Analogues of Allee Effects , 2011, The American Naturalist.

[18]  S. Ritchie,et al.  Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission , 2011, Nature.

[19]  S. Ritchie,et al.  The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations , 2011, Nature.

[20]  D. Focks,et al.  Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. , 1993, Journal of medical entomology.

[21]  Robert A. Gardner Existence and stability of travelling wave solutions of competition models: A degree theoretic approach , 1982 .

[22]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[23]  N. Barton,et al.  The dynamics of hybrid zones , 1979, Heredity.

[24]  N. F. Britton,et al.  Modelling the Use of Wolbachia to Control Dengue Fever Transmission , 2013, Bulletin of mathematical biology.

[25]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[26]  D. Hilhorst,et al.  Singular limit of a competition–diffusion system with large interspecific interaction , 2012 .