Testing, analyzing and predicting the comfort properties of textiles

Abstract: The multiplicity and complexity of factors influencing the comfort phenomenon has resulted in numerous studies dealing with different comfort-related aspects. This chapter provides an overview of the different approaches used for characterizing thermophysiological and neurophysiological comfort attributes. The chapter also highlights a recently developed design-oriented comfort model that integrates comfort related factors into a single index.

[1]  S. M. Spivak,et al.  A Screening Technique for Fabric Handle , 1993 .

[2]  B. Slaten,et al.  Objective Evaluation of Fabric Hand , 1999 .

[3]  P. O. Fanger,et al.  Thermal environment — Human requirements , 1986 .

[4]  Yehia E. El Mogahzy,et al.  Friction in Fibrous Materials , 1993 .

[5]  S. K. Batra,et al.  THERMAL BONDING OF NONWOVEN FABRICS , 1995 .

[6]  H. Hensel,et al.  Neural processes in thermoregulation. , 1973, Physiological reviews.

[7]  Yehia E. El Mogahzy,et al.  Friction in Fibrous Materials , 1991 .

[8]  Yi Li,et al.  Mathematical Simulation of the Perception of Fabric Thermal and Moisture Sensations , 2002 .

[9]  Jinlian Hu,et al.  Structure and Mechanics of Woven Fabrics , 2004 .

[10]  Byron W. Jones Capabilities and limitations of thermal models for use in thermal comfort standards , 2002 .

[11]  L. Berglund,et al.  A standard predictive index of human response to the thermal environment , 1986 .

[12]  F. C. Houghten Determining lines of equal comfort , 1923 .

[13]  A. H. Woodcock Moisture Transfer in Textile Systems, Part I , 1962 .

[14]  H. M. Elder,et al.  5—FABRIC SOFTNESS, HANDLE, AND COMPRESSION , 1984 .

[15]  M L Collis,et al.  Thermoregulatory heat production in man: prediction equation based on skin and core temperatures. , 1977, Journal of applied physiology: respiratory, environmental and exercise physiology.

[16]  Jinlian Hu,et al.  A Psychophysical Model for Objective Fabric Hand Evaluation: An Application of Stevens's Law , 1993 .

[17]  B. Jones Transient interaction between the human and the thermal environment , 1992 .

[18]  B. Farnworth A Numerical Model of the Combined Diffusion of Heat and Water Vapor Through Clothing , 1986 .

[19]  Roger L. Barker,et al.  In Vivo Cutaneous and Perceived Comfort Response to Fabric , 1990 .

[20]  D. Bishop Fabrics Sensory and Mechanical Properties , 1996 .

[21]  J. O. Kim,et al.  Objective Assessment of Fabric Handle in Fabrics Treated with Flame Retardants , 1996 .

[22]  Lyman Fourt,et al.  Clothing comfort and function. , 1970 .

[23]  Hyo-Seon Ryu,et al.  An Alternative Approach to the Objective Measurement of Fabrics , 1993 .

[24]  L. P. Herrington,et al.  PHYSIOLOGICAL REACTIONS OF THE HUMAN BODY TO VARYING ENVIRONMENTAL TEMPERATURES , 1937 .

[25]  F. T. P. B.Sc. 26—THE “HANDLE” OF CLOTH AS A MEASURABLE QUANTITY , 1930 .

[26]  H. M. Behery,et al.  Comparison of Fabric Hand Assessment in the United States and Japan , 1986 .

[27]  I. Porat,et al.  Measurement of Fabric Roughness by a Non- contact Method , 1993 .

[28]  Ning Pan,et al.  A New Approach to the Objective Evaluation of Fabric Handle from Mechanical Properties , 1988 .

[29]  K. Slater,et al.  Comfort Properties of Textiles , 1977 .

[30]  J. E. McIntyre,et al.  Textile terms and definitions , 1995 .

[31]  Masako Niwa,et al.  Objective Hand Measurement of Nonwoven Fabrics , 1994 .

[32]  F. S. Kilinc-Balci,et al.  5 – Testing and analyzing comfort properties of textile materials for the military , 2008 .

[33]  Yi Li,et al.  Mathematical Simulation of Heat and Moisture Transfer in a Human-Clothing-Environment System , 1998 .

[34]  L. P. Herrington,et al.  RELATIONS BETWEEN ATMOSPHERIC CONDITIONS, PHYSIOLOGICAL REACTIONS AND SENSATIONS OF PLEASANTNESS , 1937 .

[35]  Robin W. Dent Transient Comfort Phenomena Due to Sweating , 2001 .

[36]  Masako Niwa,et al.  Fabric Performance in Clothing and Clothing Manufacture , 1989 .

[37]  François Michaud,et al.  A new predictive thermal sensation index of human response , 1999 .

[38]  Roger L. Barker,et al.  The Bending Behaviour of Plain-woven Fabrics Part II: The Case of Linear Thread-bending Behaviour , 1990 .

[39]  Yi Li,et al.  Moisture Management Tester: A Method to Characterize Fabric Liquid Moisture Management Properties , 2005 .

[40]  Yi Li,et al.  THE SCIENCE OF CLOTHING COMFORT , 2001 .

[41]  J. P. Rust,et al.  Fabric Softness Classification Using Linear and Nonlinear Models , 2000 .

[42]  J. Atkinson,et al.  Large Deformation Modelling of Flexible Materials , 1996 .

[43]  H. M. Elder,et al.  33—A PSYCHOLOGICAL SCALE FOR FABRIC STIFFNESS , 1985 .

[44]  T. Ghosh,et al.  Indirect Measurement of the Moment-Curvature Relationship for Fabrics , 1990 .

[45]  Yi Li,et al.  Physical Mechanisms of Moisture Diffusion into Hygroscopic Fabrics during Humidity Transients , 2000 .

[46]  K. Yeung,et al.  Influence of Thickness and Porosity on Coupled Heat and Liquid Moisture Transfer in Porous Textiles , 2002 .

[47]  P. Fanger,et al.  Upper limits for indoor air humidity to avoid uncomfortably humid skin , 1998 .

[48]  Pier Giorgio Minazio,et al.  FAST – Fabric Assurance by Simple Testing , 1995 .

[49]  H. M. Elder,et al.  9—FABRIC STIFFNESS, HANDLE, AND FLEXION , 1984 .

[50]  A. P. Gagge,et al.  An Effective Temperature Scale Based on a Simple Model of Human Physiological Regulatiry Response , 1972 .

[51]  M Hassan,et al.  Developments in measurement and evaluation of fabric hand , 2005 .