Partial Order Control and Optimal Control of Discrete Event Systems modeled as Polynomial Dynamical

In this paper, we propose computational methods for the synthesis of controllers for discrete event systems modeled by polynomial dynamical systems over finite Galois field. The control objectives are specified as order relations to be checked and as minimization of a given cost function over the states through the trajectories of the system. The control objectives are then synthesized using algebraic tools such as ideals, varieties and morphisms. The applications of these methods to the safety specification of a power transformer station controller is finally presented.

[1]  Yong Li,et al.  Control of Vector Discrete-Event Systems , 1993 .

[2]  W. C. Mcginnis Ideals , 1925, Free Speech.

[3]  Paul Le Guernic,et al.  Signal: The specification of a generic, verified production cell controller , 1995 .

[4]  Christos G. Cassandras,et al.  Introduction to the Modelling, Control and Optimization of Discrete Event Systems , 1995 .

[5]  R. Sengupta,et al.  Extensions to the Theory of Optimal Control of Discrete Event Systems , 1993 .

[6]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[7]  Bruno Dutertre,et al.  Control of polynomial dynamic systems : an example , 1994 .

[8]  Emilio Briales Morales,et al.  Multi-Valued Logic and Gröbner Bases with Applications to Modal Logic , 1991, J. Symb. Comput..

[9]  W. M. Wonham,et al.  Modular supervisory control of discrete-event systems , 1988, Math. Control. Signals Syst..

[10]  E. Clarke,et al.  Automatic Veriication of Nite-state Concurrent Systems Using Temporal-logic Speciications. Acm , 1993 .

[11]  Roger Germundsson Basic Results on Ideals and Varieties in Finite Fields , 1991 .

[12]  P. Ramadge,et al.  Supervisory control of a class of discrete event processes , 1987 .

[13]  Walter Murray Wonham,et al.  On observability of discrete-event systems , 1988, Inf. Sci..

[14]  Michael Heymann,et al.  On optimal attraction in discrete-event processes , 1993, Inf. Sci..

[15]  Stéphane Lafortune,et al.  A graph-theoretic optimal control problem for terminating discrete event processes , 1992, Discret. Event Dyn. Syst..

[16]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[17]  Guy Cohen,et al.  Commande optimale, décentralisation et jeux dynamiques , 1976 .

[18]  Randal E. Bryant,et al.  Efficient implementation of a BDD package , 1991, DAC '90.

[19]  P. Guernic,et al.  Data-flow to Von Neumann : the SIGNAL approach , 1990 .

[20]  A. Benveniste,et al.  Dynamical systems over Galois fields and DEDS control problems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[21]  S. Balemi,et al.  Supervisory control of a rapid thermal multiprocessor , 1993, IEEE Trans. Autom. Control..

[22]  Raja Sengupta,et al.  Diagnosability of discrete-event systems , 1995, IEEE Trans. Autom. Control..

[23]  P. Ramadge,et al.  Supervision of discrete event processes , 1982, 1982 21st IEEE Conference on Decision and Control.

[24]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[25]  Dan Ionescu Conditions for optimization of discrete event systems using temporal logic models , 1994 .

[26]  Masahiro Fujita,et al.  Applications of Multi-Terminal Binary Decision Diagrams , 1995 .

[27]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .

[28]  Stéphane Lafortune,et al.  Failure diagnosis using discrete event models , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[29]  P. Ramadge,et al.  Modular feedback logic for discrete event systems , 1987 .

[30]  Kunihiko Hiraishi,et al.  Analysis and control of discrete event systems represented by petri nets , 1988 .

[31]  Hervé Marchand,et al.  Synchronous design of a transformer station controller with SIGNAL , 1995, Proceedings of International Conference on Control Applications.

[32]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[33]  Michel Le Borgne Systemes dynamiques sur des corps finis , 1993 .

[34]  Hervé Marchand,et al.  Methodes de synthese d'automatismes decrits par des systemes a evenements discrets finis , 1997 .

[35]  Éric Rutten,et al.  Formal Verification of SIGNAL Programs: Application to a Power Transformer Station Controller , 1996, AMAST.

[36]  R. Bryant Graph-Based Algorithms for Boolean Function Manipulation12 , 1986 .

[37]  K. Passino,et al.  On the optimal control of discrete event systems , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.