Precalibrating an intermediate complexity climate model

Credible climate predictions require a rational quantification of uncertainty, but full Bayesian calibration requires detailed estimates of prior probability distributions and covariances, which are difficult to obtain in practice. We describe a simplified procedure, termed precalibration, which provides an approximate quantification of uncertainty in climate prediction, and requires only that uncontroversially implausible values of certain inputs and outputs are identified. The method is applied to intermediate-complexity model simulations of the Atlantic meridional overturning circulation (AMOC) and confirms the existence of a cliff-edge catastrophe in freshwater-forcing input space. When uncertainty in 14 further parameters is taken into account, an implausible, AMOC-off, region remains as a robust feature of the model dynamics, but its location is found to depend strongly on values of the other parameters.

[1]  Jonathan Rougier,et al.  Probabilistic Inference for Future Climate Using an Ensemble of Climate Model Evaluations , 2007 .

[2]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[3]  Robert Marsh,et al.  Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model , 2005 .

[4]  Michael Goldstein,et al.  Bayesian Forecasting for Complex Systems Using Computer Simulators , 2001 .

[5]  J. Rougier Efficient Emulators for Multivariate Deterministic Functions , 2008 .

[6]  Peter E. Rossi,et al.  Case Studies in Bayesian Statistics , 1998 .

[7]  Michael Goldstein,et al.  Probabilistic Formulations for Transferring Inferences from Mathematical Models to Physical Systems , 2005, SIAM J. Sci. Comput..

[8]  M. Saier,et al.  Climate Change, 2007 , 2007 .

[9]  Timothy M. Lenton,et al.  A probabilistic calibration of climate sensitivity and terrestrial carbon change in GENIE-1 , 2010 .

[10]  A. R. Price,et al.  Effects of atmospheric dynamics and ocean resolution on bi-stability of the thermohaline circulation examined using the Grid ENabled Integrated Earth system modelling (GENIE) framework , 2007, Climate Dynamics.

[11]  Simon J. Cox,et al.  Bistability of the thermohaline circulation identified through comprehensive 2-parameter sweeps of an efficient climate model , 2004 .

[12]  Robin K. S. Hankin,et al.  Towards the probability of rapid climate change , 2006 .

[13]  M. Kynn The ‘heuristics and biases’ bias in expert elicitation , 2007 .

[14]  Jonathan Rougier,et al.  Analyzing the Climate Sensitivity of the HadSM3 Climate Model Using Ensembles from Different but Related Experiments , 2009 .

[15]  Andrei P. Sokolov,et al.  A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration , 2005 .

[16]  Andrei P. Sokolov,et al.  Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes , 2006 .

[17]  J. Murphy,et al.  A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[19]  Nebojsa Nakicenovic,et al.  Avoiding dangerous climate change , 2006 .

[20]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[21]  J. Rougier,et al.  Bayes Linear Calibrated Prediction for Complex Systems , 2006 .

[22]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[23]  James D. Annan,et al.  An efficient climate forecasting method using an intermediate complexity Earth System Model and the ensemble Kalman filter , 2004 .

[24]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[25]  Michael Goldstein,et al.  Reified Bayesian modelling and inference for physical systems , 2009 .

[26]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[27]  Jean-Philippe Vial,et al.  Oracle-based optimization applied to climate model calibration , 2006 .

[28]  Hsueh-Sheng Wu,et al.  What Are Categorical Data ? , 2010 .

[29]  M. G. Morgan,et al.  Expert judgements on the response of the Atlantic meridional overturning circulation to climate change , 2007 .

[30]  Richard A. Wood,et al.  Global Climatic Impacts of a Collapse of the Atlantic Thermohaline Circulation , 2002 .

[31]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[32]  Eric R. Ziegel,et al.  Handbook of Statistics 13: Design and Analysis of Experiments , 2000 .

[33]  A. Seheult,et al.  Pressure Matching for Hydrocarbon Reservoirs: A Case Study in the Use of Bayes Linear Strategies for Large Computer Experiments , 1997 .

[34]  Jonathan Rougier,et al.  Inference in ensemble experiments , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[36]  P. C. Gehlen,et al.  Computer Experiments , 1996 .

[37]  Brian D. Ripley,et al.  Modern Applied Statistics with S Fourth edition , 2002 .

[38]  W. Collins,et al.  Global climate projections , 2007 .

[39]  M. Webb,et al.  Quantification of modelling uncertainties in a large ensemble of climate change simulations , 2004, Nature.

[40]  Stefano Schiavon,et al.  Climate Change 2007: The Physical Science Basis. , 2007 .

[41]  R. Wood,et al.  Impacts of thermohaline circulation shutdown in the twenty-first century , 2008 .

[42]  Mojib Latif,et al.  Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations , 2005 .

[43]  Simon J. Cox,et al.  Multiobjective Tuning of Grid-Enabled Earth System Models Using a Non-dominated Sorting Genetic Algorithm (NSGA-II) , 2006, 2006 Second IEEE International Conference on e-Science and Grid Computing (e-Science'06).