On the room-temperature phase diagram of high pressure hydrogen: an ab initio molecular dynamics perspective and a diffusion Monte Carlo study.

The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results.

[1]  Enge Wang,et al.  The water-benzene interaction: insight from electronic structure theories. , 2009, The Journal of chemical physics.

[2]  Russell J. Hemley,et al.  Ultrahigh-pressure transitions in solid hydrogen , 1994 .

[3]  R. Hemley,et al.  Symmetry breaking in dense solid hydrogen: mechanisms for the transitions to phase II and phase III. , 2009, Physical review letters.

[4]  A. Alavi,et al.  Quantum nature of the proton in water-hydroxyl overlayers on metal surfaces. , 2010, Physical review letters.

[5]  G. Profeta,et al.  Ab initio description of high-temperature superconductivity in dense molecular hydrogen. , 2008, Physical review letters.

[6]  M. Eremets,et al.  Conductive dense hydrogen. , 2011, Nature materials.

[7]  W. Foulkes,et al.  Quantum Monte Carlo study of high pressure solid molecular hydrogen , 2013, 1307.1463.

[8]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[9]  Mao,et al.  Novel infrared vibron absorption in solid hydrogen at megabar pressures. , 1993, Physical review letters.

[10]  S. Deemyad,et al.  Melting line of hydrogen at high pressures. , 2008, Physical review letters.

[11]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[12]  Sandro Scandolo,et al.  Liquid–liquid phase transition in compressed hydrogen from first-principles simulations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Yanming Ma,et al.  Room-temperature structures of solid hydrogen at high pressures. , 2012, The Journal of chemical physics.

[14]  T. Miyake,et al.  Quantum distribution of protons in solid molecular hydrogen at megabar pressures , 2000, Nature.

[15]  Michele Casula Beyond the locality approximation in the standard diffusion Monte Carlo method , 2006 .

[16]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  N. Ashcroft,et al.  A superconductor to superfluid phase transition in liquid metallic hydrogen , 2004, Nature.

[18]  A. Michaelides,et al.  Quantum nature of the hydrogen bond , 2011, Proceedings of the National Academy of Sciences.

[19]  S. Bonev,et al.  Structure and phase boundaries of compressed liquid hydrogen. , 2009, Physical review letters.

[20]  N. Ashcroft,et al.  METALLIC HYDROGEN: A HIGH-TEMPERATURE SUPERCONDUCTOR. , 1968 .

[21]  Paul Loubeyre,et al.  Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen , 2002, Nature.

[22]  Matthias Scheffler,et al.  Random-phase approximation and its applications in computational chemistry and materials science , 2012, Journal of Materials Science.

[23]  D. Ceperley,et al.  Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations , 2010, Proceedings of the National Academy of Sciences.

[24]  E. Wigner,et al.  On the Possibility of a Metallic Modification of Hydrogen , 1935 .

[25]  E. Wang,et al.  Quantum simulation of low-temperature metallic liquid hydrogen , 2012, Nature Communications.

[26]  Georg Kresse,et al.  Accurate bulk properties from approximate many-body techniques. , 2009, Physical review letters.

[27]  DIPOLE-QUADRUPOLE INTERACTIONS AND THE NATURE OF PHASE III OF COMPRESSED HYDROGEN , 1999, cond-mat/9909383.

[28]  A quantum fluid of metallic hydrogen suggested by first-principles calculations , 2004, Nature.

[29]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[30]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[31]  Chris J. Pickard,et al.  Density functional theory study of phase IV of solid hydrogen , 2012, 1204.3304.

[32]  Giulia Galli,et al.  Ab initio simulations of dense liquid deuterium: Comparison with gas gun shock wave experiments , 2004 .

[33]  R. Hemley,et al.  High-pressure measurements of hydrogen phase IV using synchrotron infrared spectroscopy. , 2013, Physical review letters.

[34]  E. Wang,et al.  Nature of proton transport in a water-filled carbon nanotube and in liquid water. , 2013, Physical chemistry chemical physics : PCCP.

[35]  J. Klimeš,et al.  Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. , 2012, The Journal of chemical physics.

[36]  E. Gregoryanz,et al.  Mixed molecular and atomic phase of dense hydrogen. , 2012, Physical review letters.

[37]  D. Ceperley,et al.  Nonlocal pseudopotentials and diffusion Monte Carlo , 1991 .

[38]  G. Ackland,et al.  Identification of high-pressure phases III and IV in hydrogen: Simulating Raman spectra using molecular dynamics , 2013 .

[39]  H. Mao,et al.  Raman measurements of phase transitions in dense solid hydrogen and deuterium to 325 GPa , 2014, Proceedings of the National Academy of Sciences.

[40]  Dario Alfè,et al.  Binding of hydrogen on benzene, coronene, and graphene from quantum Monte Carlo calculations. , 2011, The Journal of chemical physics.

[41]  Markus Holzmann,et al.  Finite-size error in many-body simulations with long-range interactions. , 2006, Physical review letters.

[42]  D M Ceperley,et al.  Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[44]  R. Martin,et al.  Metallization of molecular hydrogen: predictions from exact-exchange calculations. , 2000, Physical review letters.

[45]  W. Foulkes,et al.  Fate of density functional theory in the study of high-pressure solid hydrogen , 2013, 1307.1351.

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  Chris J. Pickard,et al.  Structure of phase III of solid hydrogen , 2007 .

[48]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[49]  Natalia Dubrovinskaia,et al.  Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar , 2012, Nature Communications.

[50]  R. Hemley,et al.  Synchrotron infrared measurements of dense hydrogen to 360 GPa. , 2012, Physical review letters.

[51]  Quantum Monte Carlo simulation of the high-pressure molecular-atomic crossover in fluid hydrogen. , 2006, Physical review letters.

[52]  Carlo Pierleoni,et al.  Nuclear quantum effects and nonlocal exchange-correlation functionals applied to liquid hydrogen at high pressure. , 2013, Physical review letters.

[53]  Yanming Ma,et al.  Proton or deuteron transfer in phase IV of solid hydrogen and deuterium. , 2012, Physical review letters.

[54]  Chris J Pickard,et al.  Classical and quantum ordering of protons in cold solid hydrogen under megabar pressures , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[55]  H. Mao,et al.  Spectroscopic studies of the vibrational and electronic properties of solid hydrogen to 285 GPa , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Metallization of fluid hydrogen , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[57]  M. Parrinello,et al.  AB INITIO PATH INTEGRAL MOLECULAR DYNAMICS : BASIC IDEAS , 1996 .

[58]  Enge Wang,et al.  Path integral treatment of proton transport processes in BaZrO3. , 2008, Physical review letters.

[59]  Michele Parrinello,et al.  Ab initio path-integral molecular dynamics , 1994 .

[60]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[61]  W. Nellis,et al.  Metallization and Electrical Conductivity of Hydrogen in Jupiter , 1996, Science.

[62]  W. J. Nellis,et al.  Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar) , 1996 .

[63]  D. M. Ceperley,et al.  Towards a predictive first-principles description of solid molecular hydrogen with density functional theory , 2013, 1303.6673.

[64]  R. Needs,et al.  Smooth relativistic Hartree-Fock pseudopotentials for H to Ba and Lu to Hg. , 2005, The Journal of chemical physics.

[65]  Dario Alfe,et al.  First-principles simulations of direct coexistence of solid and liquid aluminum , 2003, cond-mat/0308226.

[66]  Bonding, structures, and band gap closure of hydrogen at high pressures , 2012, 1209.3895.

[67]  A. Tkatchenko,et al.  Hydrogen bonds and van der waals forces in ice at ambient and high pressures. , 2011, Physical review letters.

[68]  Georg Kresse,et al.  Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory , 2008 .

[69]  Giulia Galli,et al.  Melting of lithium hydride under pressure. , 2003, Physical review letters.

[70]  M. J. Gillan,et al.  Efficient localized basis set for quantum Monte Carlo calculations on condensed matter , 2004 .

[71]  E. Gregoryanz,et al.  Proton tunneling in phase IV of hydrogen and deuterium , 2012 .

[72]  R. Needs,et al.  Continuum variational and diffusion quantum Monte Carlo calculations , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[73]  R J Needs,et al.  Norm-conserving Hartree-Fock pseudopotentials and their asymptotic behavior. , 2009, The Journal of chemical physics.

[74]  F. Manby,et al.  Assessing the accuracy of quantum Monte Carlo and density functional theory for energetics of small water clusters. , 2012, The Journal of chemical physics.