Spatio-temporal numerical modeling of reaction-diffusion measles epidemic system.

In this work, we investigate the numerical solution of the susceptible exposed infected and recovered measles epidemic model. We also evaluate the numerical stability and the bifurcation value of the transmission parameter from susceptibility to a disease of the proposed epidemic model. The proposed method is a chaos free finite difference scheme, which also preserves the positivity of the solution of the given epidemic model.

[1]  C. Pinto,et al.  HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load , 2018, Advances in Difference Equations.

[2]  Awadhesh Prasad,et al.  Perpetual points and hidden attractors in dynamical systems , 2015 .

[3]  Julien Clinton Sprott,et al.  Detecting Hidden Chaotic Regions and Complex Dynamics in the Self-Exciting Homopolar Disc Dynamo , 2017, Int. J. Bifurc. Chaos.

[4]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[5]  Sundarapandian Vaidyanathan,et al.  Advances and Applications in Nonlinear Control Systems , 2016 .

[6]  Matjaz Perc,et al.  Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays , 2019, Appl. Math. Comput..

[7]  M. Yao,et al.  Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic Rabinovich system , 2015 .

[8]  G. Rutherford,et al.  Measles epidemic from failure to immunize. , 1993, The Western journal of medicine.

[9]  L. Fortuna,et al.  Lava flow simulations using discharge rates from thermal infrared satellite imagery during the 2006 Etna eruption , 2009 .

[10]  M. Rafiq,et al.  Positivity preserving operator splitting nonstandard finite difference methods for SEIR reaction diffusion model , 2019, Open Mathematics.

[11]  Wei Zhang,et al.  Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo. , 2017, Chaos.

[12]  M. A. Khan,et al.  Mathematical modeling and stability analysis of Pine Wilt Disease with optimal control , 2017, Scientific Reports.

[13]  C. Paquet,et al.  Measles vaccine effectiveness in standard and early immunization strategies, Niger, 1995. , 1998, The Pediatric infectious disease journal.

[14]  Luigi Fortuna,et al.  Experimental robust synchronization of hyperchaotic circuits , 2009 .

[15]  Kazeem Oare Okosun,et al.  Global stability analysis and control of leptospirosis , 2016 .

[16]  Dumitru Baleanu,et al.  Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel. , 2018, Chaos.

[17]  M. Rafiq,et al.  Numerical modeling of three dimensional Brusselator reaction diffusion system , 2019, AIP Advances.

[18]  Manmohan Singh,et al.  Predator-prey model with prey-taxis and diffusion , 2007, Math. Comput. Model..

[19]  Edward H. Twizell,et al.  One-dimensional measles dynamics , 2004, Appl. Math. Comput..

[20]  Luigi Fortuna,et al.  New results on the synthesis of FO-PID controllers , 2010 .

[21]  Edward H. Twizell,et al.  Chaos-free numerical solutions of reaction-diffusion equations , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[22]  Edward H. Twizell,et al.  An unconditionally convergent discretization of the SEIR model , 2002, Math. Comput. Simul..

[23]  E Ahmed,et al.  On fractional order models for Hepatitis C , 2010, Nonlinear biomedical physics.

[24]  M. Khan,et al.  Modeling the dynamics of hepatitis E via the Caputo–Fabrizio derivative , 2019, Mathematical Modelling of Natural Phenomena.

[25]  P. Arena,et al.  Hyperchaos from cellular neural networks , 1995 .